91 |
Codigos esfericos em toros planares / Spherical codes on flat torusTorezzan, Cristiano, 1976- 13 August 2018 (has links)
Orientadores: Sueli Irene Rodrigues Costa, Jose Plinio de Oliveira Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T23:35:30Z (GMT). No. of bitstreams: 1
Torezzan_Cristiano_D.pdf: 2362096 bytes, checksum: 1680bc5fc7cb94a63b0b11b50ac5a1c4 (MD5)
Previous issue date: 2009 / Resumo: Códigos esféricos em espaços euclidianos n-dimensionais são conjuntos finitos de pontos sobre superfícies esféricas e têm sido amplamente estudados em conexão com a transmissão de sinais sobre um canal Gaussiano. Para este propósito deseja-se maximizar a distância mínima entre dois pontos quaisquer do código, o que está fortemente relacionado com o problema mais geral do empacotamento em esferas, o qual contempla aplicações em outras áreas. Na primeira parte deste trabalho estudamos códigos esféricos gerados como órbita de um vetor unitário sob a ação de um grupo comutativo de matrizes ortogonais, os denominados códigos de grupo comutativo. Propomos um método para obter o melhor código de grupo comutativo n-dimensional de ordem M, que baseia-se na associação entre tais códigos em dimensão 2k e reticulados k-dimensionais. Utilizando fatorações matriciais conhecidas, como as formas normais de Hermite e Smith, demonstramos que é possível reduzir o número de casos a serem analisados através da identificação de códigos isométricos que podem ser descartados. O problema da busca do vetor inicial ótimo para códigos de grupo comutativo é formalmente estabelecido com um problema de programação linear e utilizado em uma das etapas do método. Apresentamos resultados numéricos, incluindo tabelas com códigos de grupo comutativo ótimos em várias dimensões. Outra contribuição deste trabalho é a introdução de uma nova família de códigos esféricos, na qual os pontos são alocados sobre a superfície da esfera unitária 2k-dimensional em camadas de toros planares. Em cada uma das camadas deste código, pode-se estabelecer um código de grupo para a geração dos sinais e utilizar os resultados acima mencionados. Além de limitantes, inferior e superior, para o número de pontos, um método para construção destes códigos é apresentado explicitamente e alguns exemplos são construídos. Os resultados mostram que tais códigos têm desempenho comparável aos melhores códigos esféricos estruturados conhecidos, com destaque para uma potencial vantagem no processo de codificação/decodificação, decorrente da homogeneidade, estrutura de grupo e associação a reticulados na metade da dimensão / Abstract: Spherical codes in Euclidean spaces are finite sets of points on the surface of a multidimensional sphere and have been widely studied in connection with the signal transmission over a Gaussian channel. For this purpose one fundamental issue is to maximize the minimum distance between two code points, what is strongly related to the more general problem of sphere packing. In the first part of this work we study spherical codes generated as orbit of a initial vector under the action of a commutative group of orthogonal matrices, the so called commutative group codes. A method for searching the best n-dimensional commutative group code of order M is presented. Based on the well known Hermite and Smith normal form decomposition of matrices, and also on the relation between 2k-dimensional com- mutative group codes and k-dimensional lattices, we show that it is possible to reduce the number of cases to be analyzed through the identification of isometric codes which can be discarded. The initial vector problem for these codes is formally established as a linear programming problem and used as a sub-routine of the method. Numerical results are presented, including tables of good commutative groups codes in several dimensions. Other contribution of this work is a new class of spherical codes, constructed by placing points on flat tori layers. The codebook on each torus can be generated by a commutative group of orthogonal matrices, using the results previously mentioned. Upper and lower bounds on performance are derived and a systematic method for constructing the codes is presented. Some examples are constructed and the results exhibit good performance when compared to the best known structured spherical codes, with some advantage in the encoding/decoding process, due to the homogeneity, group structure and the relation with lattices in the half of the dimension / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
92 |
Totally Symmetric and Medial Quasigroups and their ApplicationsYoung, Benjamin M. 21 June 2021 (has links)
No description available.
|
93 |
Planarité et Localité en Percolation / Planarity and locality in percolation theoryTassion, Vincent 30 June 2014 (has links)
Cette thèse s'inscrit dans l'étude mathématique de la percolation, qui regroupe une famille de modèles présentant une transition de phase. Des avancées majeures au cours des quinze dernières années, notamment l'invention du SLE et la preuve de l'invariance conforme de la percolation de Bernoulli critique, nous permettent aujourd'hui d'avoir une image très complète de la percolation de Bernoulli sur le réseau triangulaire. Cependant, de nombreuses questions demeurent ouvertes, et ont motivé notre travail.La première d'entre elle est l'universalité de la percolation plane, qui affirme que les propriétés macroscopiques de la percolation plane critique ne devraient pas dépendre du réseau sous-jacent à sa définition. Nous montrons, dans le cadre de la percolation Divide and Color, un résultat qui va dans le sens de cette universalité et identifions, dans ce contexte, des phénomènes macroscopiques indépendants du réseau microscopique. Une version plus faible d'universalité est donnée par la théorie de Russo-Seymour-Welsh (RSW), et sa validité est connue pour la percolation de Bernoulli (sans dépendance) sur les réseaux plans suffisamment symétriques. Nous étudions de nouveaux arguments de type RSW pour des modèles de percolation avec dépendance. La deuxième question que nous avons abordée est celle de l'absence d'une composante connexe ouverte infinie au point critique, une question importante du point de vue physique, puisqu'elle traduit la continuité de la transition de phase. Dans deux travaux en collaboration avec Hugo Duminil-Copin et Vladas Sidoravicius, nous montrons que la transition de phase est continue pour la percolation de Bernoulli sur le graphe Z^2x{0,...,k}, et pour la percolation FK sur le réseau carré avec paramètre q inférieur ou égal à 4. Enfin, la dernière question qui nous a guidés est la localité du point critique : la donnée des boules de grands rayons d'un graphe suffit-elle à identifier avec une bonne précision la valeur du point critique? Dans un travail en collaboration avec Sébastien Martineau, nous répondons de manière affirmative à cette question dans le cadre des graphes de Cayley de groupes abéliens. / This thesis is part of the mathematical study of percolation theory, which includes a family of models with a phase transition. Major advances in the 2000s, including the invention of SLE and the proof of conformal invariance of critical Bernoulli percolation, provide us with a very complete picture of the Bernoulli percolation process on the triangular lattice. Fortunately, many questions remain open, and motivated our work.The first of these is the universality of planar percolation, which states that the macroscopic properties of critical planar percolation should not depend on the underlying graph. We study this question in the framework of Divide and Color percolation, and prove in this context a result that goes in the direction of universality. A weaker universality statement is given by the theory of Russo-Seymour-Welsh (RSW), which is known to hold for planar Bernoulli percolation (without dependence) on sufficiently symmetric graphs. We study new RSW-type arguments for percolation models with dependence.The second question is the absence of an infinite cluster at the critical point, an important question from a physical point of view, equivalent to the continuity of the phase transition. In two different joint works with Hugo Duminil-Copin and Vladas Sidoravicius, we show that the phase transition is continuous for Bernoulli percolation on the graph Z^2 x {0,...,k} and for FK percolation on the square lattice with parameter q smaller than or equal to 4.Finally, the last question that guided us is the locality of the critical point: is it possible to determine with good accuracy the critical value for Bernoulli percolation on a graph if we know only the balls with large radii? Jointly with Sébastien Martineau, we answer positively to this question in the framework of Cayley graphs of abelian groups.
|
Page generated in 0.0455 seconds