• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 49
  • 25
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 200
  • 99
  • 68
  • 63
  • 31
  • 28
  • 24
  • 22
  • 22
  • 22
  • 20
  • 18
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Development of a machine-tooling-process integrated approach for abrasive flow machining (AFM) of difficult-to-machine materials with application to oil and gas exploration componenets

Howard, Mitchell James January 2014 (has links)
Abrasive flow machining (AFM) is a non-traditional manufacturing technology used to expose a substrate to pressurised multiphase slurry, comprised of superabrasive grit suspended in a viscous, typically polymeric carrier. Extended exposure to the slurry causes material removal, where the quantity of removal is subject to complex interactions within over 40 variables. Flow is contained within boundary walls, complex in form, causing physical phenomena to alter the behaviour of the media. In setting factors and levels prior to this research, engineers had two options; embark upon a wasteful, inefficient and poor-capability trial and error process or they could attempt to relate the findings they achieve in simple geometry to complex geometry through a series of transformations, providing information that could be applied over and over. By condensing process variables into appropriate study groups, it becomes possible to quantify output while manipulating only a handful of variables. Those that remain un-manipulated are integral to the factors identified. Through factorial and response surface methodology experiment designs, data is obtained and interrogated, before feeding into a simulated replica of a simple system. Correlation with physical phenomena is sought, to identify flow conditions that drive material removal location and magnitude. This correlation is then applied to complex geometry with relative success. It is found that prediction of viscosity through computational fluid dynamics can be used to estimate as much as 94% of the edge-rounding effect on final complex geometry. Surface finish prediction is lower (~75%), but provides significant relationship to warrant further investigation. Original contributions made in this doctoral thesis include; 1) A method of utilising computational fluid dynamics (CFD) to derive a suitable process model for the productive and reproducible control of the AFM process, including identification of core physical phenomena responsible for driving erosion, 2) Comprehensive understanding of effects of B4C-loaded polydimethylsiloxane variants used to process Ti6Al4V in the AFM process, including prediction equations containing numerically-verified second order interactions (factors for grit size, grain fraction and modifier concentration), 3) Equivalent understanding of machine factors providing energy input, studying velocity, temperature and quantity. Verified predictions are made from data collected in Ti6Al4V substrate material using response surface methodology, 4) Holistic method to translating process data in control-geometry to an arbitrary geometry for industrial gain, extending to a framework for collecting new data and integrating into current knowledge, and 5) Application of methodology using research-derived CFD, applied to complex geometry proven by measured process output. As a result of this project, four publications have been made to-date – two peer-reviewed journal papers and two peer-reviewed international conference papers. Further publications will be made from June 2014 onwards.
42

Design of bucket teeth

Cristine, Hedlund, Tasevski, Alexander January 2016 (has links)
For many years, buckets have been equipped with teeth to help penetrate, gouge and breakout materials. The teeth also works as wear parts and can be replaced when they are worn down, and thus increase the service life of the bucket. The first teeth were made like a one-piece design and to replace such tooth required both cutting and welding which was very time consuming. Today’s modern teeth consist of an adapter that is welded on the bucket and a tooth with a locking system that makes it easy to replace the tooth when needed. The teeth on the market today are cast, which means that the hardness cannot be guaranteed through the whole cast and the hardest tooth is measured to be around 500 HB.   SSABs brand Hardox is the toughest steel on the market. It is extremely wear resistant and has a three time longer service life than ordinary steel. To increase the use of Hardox the possibility to manufacture bucket teeth of three or more plates are examined.   This thesis has applied a product development process to mainly develop concepts of the locking system that holds the adapter and tooth together. The locking systems main requirement is to be hammerless, meaning that it is not hammered in, due to the high risk of injury and longer assembly time. Apart from, the geometry of the tooth will be developed to give a better wear resistance.   The result is a tooth with at least twice as long service life than the cast competitors and two concepts of locking system. Both locking systems meet the requirement of being hammerless and the sustainability is ensured with calculations of shear force. The geometry of the tooth is design to be self-sharpening, which allows it to stay sharper throughout its service life. Wear test using DEM analysis assure a positive outcome.
43

Performance and Total PM Emission Factor Evaluation of Expendable Abrasives

Kambham, Kalpalatha 22 May 2006 (has links)
Dry abrasive blasting is one of the most widely used methods of surface preparation. Air emissions from this process include particulate matter (PM) and metals. Spent abrasive generated from this process may be hazardous in nature. With increasing concern on health effects due to silica emissions from sand, use of alternative materials is suggested by health and regulatory agencies. The objective of this research was to evaluate performance of expendable abrasives and determine PM emission factors. Dry abrasive blasting was performed in an enclosed chamber and total PM samples were collected. Three commonly used expendable abrasives, coal slag, copper slag and specialty sand, were used to evaluate cleaner alternatives. Blast pressure and abrasive feed rate, two important process conditions were varied to study their effect on performance of an abrasive. Productivity, consumption and emission factors (performance parameters) were calculated and their variation with pressure and feed rate was evaluated. Two dimensional and three dimensional predicted models were developed to estimate the performance at intermediate blast pressure and feed rate conditions. Performance of the three abrasives was compared with respect to emission potential, productivity and consumption. Emission factors developed in this research will help in accurate estimation of total PM emissions and to select cleaner abrasives and optimum process conditions that will results in minimum emissions and reduced health risk. The productivity and consumption models will help is estimating life cycle costs including material cost, equipment cost, energy cost, labor costs, waste disposal cost, and compliance costs. Consumption models will also help in determining the quantity of spent abrasive generated, identify abrasives with lower material consumption, and identify process conditions that generate minimum spent abrasives. In addition, these models will help industries in making environmentally preferable purchasing (EPP), which results in pollution prevention and cost reduction.
44

Evaluation of Productivity, Consumption, and Uncontrolled Total Particulate Matter Emission Factors of Recyclable Abrasives

Sangameswaran, Sivaramakrishnan 22 May 2006 (has links)
Dry abrasive blasting is a commonly used surface preparation operation by many process industries to clean up metallic surfaces and achieve surface finishes suitable for future adhesion. Abrasives used in this process can be recyclable or expendable. This study was undertaken to evaluate the performance of three recyclable abrasives: garnet, barshot and steel grit/shot in terms of productivity (area cleaned per unit time), consumption (amount of abrasive used per unit area cleaned) and uncontrolled total particulate matter (TPM) emission factors (in terms of mass of pollutant emitted per unit area cleaned and mass of pollutant emitted per unit mass of abrasive consumed). Though there have been various attempts in the past to evaluate the performance of these abrasives, there has not been a streamlined approach to evaluate these parameters in the commonly used range of process conditions, or to identify and model the influences of key process variables on these performance parameters. The first step in this study was to evaluate the performance of these three abrasives in blasting painted steel panels under enclosed blasting conditions and using USEPA recommended protocols. The second step was to model the influences of blast pressure and abrasive feed rate, two most critical parameters on productivity, consumption and emission factors. Two and three dimensional models were obtained using multiple linear regression techniques to express productivity, consumption and TPM emission factors in terms of blast pressure and abrasive feed rate. Barshot was found to have high productivities over all and steel grit/shot demonstrated the least emission potential at almost all of the tested pressure and feed rate conditions. The data will help fill the gaps in literature currently available for dry abrasive blasting performance. The models obtained will help industries, the research community and the regulatory agencies to make accurate estimates of the performance parameters. Estimating productivity and consumption will help industries identify best management practices by optimizing the process conditions to achieve high productivity and low consumption rates. Emission factor determination will help in reducing the emissions to the atmosphere by choosing process conditions corresponding to minimum emissions. The performance parameters once optimized can result in reduction in material, labor, energy, emission and disposal costs, lower resource utilization and hence reduction in overall life cycle costs of dry abrasive process. The developed models will help industries in making environmentally preferable purchases thereby promoting source reduction options. PM emissions estimated using the models presented here will aid studies on health risk associated with inhalation of atmospheric PM.
45

The influence of microstructure on mechanical and tribological properties of lamellar and compacted irons in engine applications

Ghasemi, Rohollah January 2016 (has links)
Lamellar graphite iron (LGI) is commonly used in diesel engine applications such as piston rings–cylinder liner where an excellent combination of physical and tribological properties is essential to avoid scuffing and bore polishing issues. The excellent tribological behaviour of LGI alloys is related to the graphite lamellas, which act as solid lubricant agents by feeding onto the tribosurfaces under sliding conditions. However, increasingly tighter emissions and fuel economy legislations and the higher demands on enhanced power and durability have encouraged both engine designers and manufacturers to introduce pearlitic compacted graphite irons (CGI) as an alternative material replacing LGI, although the poor machinability of pearlitic CGI alloys compared to the LGI remains a challenge. The focus of this study is placed on investigating how the microstructure of LGI and CGI alloys affects their mechanical and tribological properties. This was initially undertaken by investigating representative, worn lamellar cast iron piston rings taken from a two-stroke large-bore heavy-duty diesel engine. As known that it is tribologically essential to keep the graphite open under sliding conditions, in particular under starved lubrication regimes or unlubricated conditions to avoid scuffing issues; however, this study revealed the closure of a majority of graphite lamellas; profoundly for those lamellas that were parallel to sliding direction; due to the severe matrix deformation caused by abrasion. Both microindentation and microscratch testing, which were used to crudely simulate the abrasion under starved lubricated condition in combustion chamber, suggested a novel mechanism of activating the graphite lamellas to serve as lubricating agents in which the matrix deformation adjacent to the graphite initially resulted in fracturing and then extrusion of the graphite lamellas. Additionally, in order to investigate the relation between matrix constituents, mechanical properties and machinability of cast iron materials, solution-strengthened CGI alloys were produced with different levels of silicon and section thicknesses. The results showed significant improvements in mechanical properties and machinability while deteriorating the ductility. Moreover, multiple regression analysis, based on chemical composition and microstructural characteristics was used to model the local mechanical properties of high Si ferritic CGI alloys, followed by implementing the derived models into a casting process simulation which enables the local mechanical properties of castings with complex geometries. Very good agreement was observed between the measured and predicted microstructure and mechanical properties.
46

Avaliação dos parâmetros de soldagem na resistência ao desgaste abrasivo de revestimentos duros / Evaluation of the welding variables on the abrasion resistance of hardfacings

Dias, Marcia Fernanda Martins 11 November 2002 (has links)
Este trabalho apresenta uma análise das condições de soldagem sobre o desgaste abrasivo de um revestimento duro. O revestimento foi feito pela deposição metálica por arco submerso variando os parâmetros de soldagem e utilizando fluxos comerciais. Foram utilizados dois conjuntos de parâmetros de soldagem (conjunto 01 com velocidade de soldagem de 55 cm/min, extensão do eletrodo de 35,0 mm, tensão de 30V, corrente de 450A e o conjunto 02 com velocidade de soldagem de 50 cm/min, extensão do eletrodo de 25,5 mm, tensão do arco de 26V e corrente de 440A) e quatro fluxos comerciais (identificados como E, M, L e R) formando assim oito condições de soldagem. Foram feitas duas camadas com três cordões de solda cada sobre uma chapa base de aço SAE 1020. Corrente contínua com polaridade direta (CC-) foi utilizada em ambas condições. A resistência ao desgaste abrasivo a baixa-tensão foi avaliada pelo ensaio de desgaste do tipo Roda de borracha/areia seca conforme a norma ASTM G65-94. A análise microestrutural foi feita por microscopia óptica e a análise da região desgastada por microscopia eletrônica de varredura. A resistência ao desgaste abrasivo dos revestimentos do conjunto 01 foi superior em comparação com os revestimentos do conjunto 02, para todos os fluxos utilizados. Os fluxos E e R proporcionaram os melhores desempenho e a martensita de agulhas foi a microestrutura com a qual foram obtidos os melhores resultados de desgaste abrasivo a baixa-tensão neste estudo realizado. / This work presents an analysis of the welding conditions and its effects in the abrasive wear of hardfacings. The hardfacings were obtained by submerged arc surfacing. The welding variables were changed and the commercials fluxes were used. Two groups of welding variables were used (group 01: a traveI speed of 55 cm/min, an electrode extension of 35,0 mm, a voltage of 30V and an amperage of 450A; group 02: a traveI speed of 50 cm/min, an electrode extension of 25,0 mm, a voltage of 26V and an amperage of 440A) and four commercials fluxes (E, M, L e R designated) establishing eight welding conditions. Double-Iayered ot three beads were deposited (applied) on a SAE 1020 base metal plate. Direct current electrode negative polarity (CC-) were used in both groups of welding. The low stress abrasion resistance evaluation was carried out by dry sand/rubber wheel apparatus according to the ASTM G65-94. The microstructural analysis were done by optical microscopy and the worn surface analysis were done by scanning electronic microscopy. The abrasion resistance of the group 01 was superior as compared to the group 02, independent of the fluxe was used. The fluxes E and R presented the best results and the befter abrasion resistant microstructure was lath martensite.
47

Análise multiescala da abrasão de aços austeníticos ao manganês aplicados em britadores de minério. / Multiscale abrasion analysis of austenitic manganese steels applied to ore crushers.

Machado, Paulo Cordeiro 02 October 2017 (has links)
O desgaste abrasivo de dois aços austeníticos ao manganês, materiais com grande utilização na mineração, foi estudado empregando metodologia multiescala (escalas: macro, meso e micro). Na macroescala foram estudados os mecanismos de dano e de desgaste de revestimento de britador utilizado em campo. Na mesoescala foram realizados ensaios de britador de mandíbula e de esclerometria linear. Na microescala o ensaio de esclerometria linear foi utilizado para avaliar os efeitos da camada encruada em campo e da orientação cristalográfica dos grãos austeníticos dos aços com 12 %Mn e 20 %Mn. As técnicas de caracterização utilizadas nesta pesquisa foram: macro e microdureza, nanodureza instrumentada, MO, MEV, DRX, EBSD, FIB e MET. A pesquisa foi dividida em três Capítulos, intitulados: \"Desgaste abrasivo dos aços austeníticos com 12 %Mn e 20 %Mn via ensaio de britador de mandíbula\"; \"Efeito do encruamento e da orientação cristalográfica no desgaste por riscamento dos aços austeníticos 12 %Mn e 20 %Mn\"; e \"Microestrutura da subsuperfície do aço austenítico com 12 %Mn deformado por desgaste abrasivo\". O primeiro Capítulo mostrou, a partir do ensaio de britador de mandíbulas (mesoescala), que o aço com 20 %Mn tem tendência de maior resistência ao desgaste que o aço com 12 %Mn. Este resultado foi obtido para a mandíbula fixa do britador, na qual a severidade de desgaste foi superior a mandíbula móvel, por apresentar microcorte e microsulcamento como micromecanismos predominantes, enquanto na mandíbula móvel o micromecanismo predominante foi a microendentação. No segundo Capítulo observou-se que o desgaste por riscamento (mesoescala e microescala) não depende do perfil de encruamento gerado em campo. Entretanto, foi identificado o efeito da orientação cristalográfica, planos (001), (111) e (101), no desgaste por riscamento dos aços com 12 %Mn e 20 %Mn. No último Capítulo a análise multiescala mostrou que a microestrutura deformada na subsuperfície sofre alterações semelhantes em diferentes intensidades. Nas três escalas de análise foram observadas uma camada com grãos ultrafinos (nanométricos), na subsuperfície, e uma de transição com maclas de deformação. A formação dos grãos ultrafinos foi associada à recristalização dinâmica por deformação plástica, na qual faz parte do mecanismo de auto reparação superficial. Além dos resultados apresentados, o desenvolvimento desta pesquisa de doutorado permitiu a elaboração de duas metodologias: i. análise do efeito da orientação cristalográfica no desgaste por microesclerometria; e ii. análise de microestrutura revelada por ataque iônico - FIB. / The abrasive wear of two manganese austenitic steels, materials broadly used in mining industry, was studied using multiscale methodology (scales: macro, meso and micro). In the macroscale the mechanisms of damage and wear of in-service crusher liner were studied. In the mesoscale, jaw crusher and linear scratch tests were performed. In the microscale the linear scratch test was used to evaluate the effects of the hardening layer and the crystallographic orientation of the austenitic grains of steels with 12 %Mn and 20 %Mn. The characterization techniques used in this research were: macro and microhardness, instrumented nanohardness, OM, MEV, DRX, EBSD, FIB and TEM. The research was divided into three chapters, entitled: \"Abrasive wear of steels with 12 %Mn and 20 %Mn via jaw crusher test\"; \"The effect of the in-service workhardening and crystallographic orientation on the micro-scratch wear of austenitic steels with 12 %Mn and 20 %Mn\"; and \"Subsurface microstructure of the deformed austenitic steel with 12 %Mn by abrasive wear\". The first chapter showed, from the jaw crusher tests (i.e. mesoscale), that the steel with 20 %Mn tends to be more wear resistant than the steel with 12 %Mn. This result was obtained to the fixed jaw crusher, in which the wear severity was superior to the movable jaw, since it presents microcutting and microploughing as predominant micromechanisms, whereas in the mobile jaw the predominant micromechanism was microendentation. In the second chapter, it was observed that scratch wear (i.e. meso and microscale) does not depend on the in-service work-hardening profile. However, it was identified the effect of crystallographic orientation, (001), (111) and (101) planes, on the scratch wear of the steels with 12% Mn and 20% Mn. In the last chapter, the multiscale analysis showed that the subsurface deformed microstructure changes with different intensities. At the three analysis scales, a layer with ultrafine grains was observed in the subsurface and mechanical twins. The formation of this layer, with nanometric grains, was associated with dynamic recrystallization by plastic deformation, in which it is part of the self healing effect. In addition to the results found, the development of this doctoral research allowed for the elaboration of two methodologies: i. Analysis of the effect of crystallographic orientation on the scratch wear; and ii. Microstructure analysis revealed by ion etching - FIB.
48

Estudo do efeito da força, do módulo de elasticidade e do envelhecimento termomecânico no desgaste abrasivo da borracha de polibutadieno baixo cis. / Study of the load, the modulus of elasticity and the thermomechanical aging effect on the abrasive wear of low cis-polybutadiene rubber.

Ferreira, Renata Prata 22 May 2015 (has links)
Esta Dissertação de Mestrado tem como Objetivo estudar a influência da tangente delta, envelhecimento termomecânico e força no comportamento de uma borracha de polibutadieno baixo cis perante o desgaste abrasivo através de experimentos em roda de borracha, utilizando planejamento fatorial completo em dois níveis (DOE 2k). A literatura possui muitas informações em relação à força indicando uma relação exponencial com a taxa de desgaste, todavia em relação à tangente delta e ao envelhecimento termomecânico quase não há dados. Ao final do trabalho foi possível verificar que todos os fatores estudados são significativos com relação ao desgaste da borracha, sendo a força a variável com maior influência, seguida pelo envelhecimento. A histerese medida pela tangente delta, apesar de ser um fator importante, só exerce influência no desgaste quando a borracha se encontra no estado envelhecido. Além disto, este trabalho também apresenta informações complementares sobre propriedades que são características da borracha e pouco difundidos, como o smearing, características de ondas de abrasão (abrasion pattern), comprimento de onda (Schallamach wavelength) e ondas de destacamento (waves of detachment). / This goal of this Master thesis is the study the influence of loss factor, thermomechanical aging and applied load to the abrasion behavior of low cis polibutadiene rubber through rubber wheel testing machine experiments using 2k factorial experiment design in two levels (DOE 2k). The literature has many information involving action of force showing exponential relationship between wear rate with applied load, almost no data related to the influence of loss factor and the thermomechanical aging. It was observed that all the studied factors are significant to the wear of rubber, the force being the variable with the greatest influence, followed by aging. The loss factor, despite being an important factor, only influences the wear behavior of aged rubber. In addition, this work presents some information regarding to the typical properties only for rubber and rubber products, such as smearing, abrasion pattern and Schallamach wavelength.
49

Efeito das variáveis de nitretação por plasma na resistência à abrasão de um aço \"maraging\" / Effect of the plasma nitriding variables in the abrasion resistance of the maraging steel

Muñoz Riofano, Rosamel Melita 12 September 1997 (has links)
Visando-se a avaliação do desempenho de um sistema de nitretação por plasma que se construiu bem como a determinação da influência das variáveis do processo sobre o desempenho das camadas nitretadas ionicamente, foram nitretadas amostras do aço \"maraging\" com a seguinte composição: Fe - 18Ni - 4.2Mo - 12.3Co - 1.7Ti - 0.15Al - 0.03C. Foram variadas as seguintes condições de processo: tempo, temperatura, freqüência do pulso e condição de tratamento térmico prévio. Foram realizadas análises metalográficas, difração de raios-X, microdureza e ensaios de abrasão do tipo \"pino-sobre-disco\" para caracterização das camadas obtidas. O equipamento de nitretação apresentou excelente desempenho no tratamento das amostras utilizadas e o aço \"maraging\", excelente resposta ao tratamento de nitretação. O tempo de tratamento de 3 horas produziu as camadas mais resistentes à abrasão. Os tratamentos com corrente contínua produziram resistências à abrasão superiores às obtidas com corrente pulsada. As amostras nitretadas após o envelhecimento apresentaram resistências superiores às envelhecidas simultaneamente com a nitretação. / Pursuing the evaluation and performance of a nitration system via plasma for us constructed, as well as the determination of the influence of variables of the process on the performance of ionically nitrated layers, it was nitrated maraging steel samples with the next compositions: Fe -18Ni - 4,2Mo - 12,3Co - 1,7Ti - 0,15AI- 0,03C. The following processing conditions were modified: time, temperature, pulse frequency end previous thermal treatment condition. Metallografic analyses, X-ray diffraction, microhardness and pin-on-dick type abrasion test were practised on samples for characterization of their layers. The nitration equipment had excellent performance in the treatment of samples used while the \"maraging\" steel showed excellent answer to the nitration treatment. A treatment time of three hours produced the more resistant layers to abrasion. The treatments with continuous current produced abrasion resistance higher than in treatment with pulsed current post-aged nitrated samples showed higher resistances than those aged during the nitration.
50

Caracterização do resíduo de serragem de rochas ornamentais para aplicações geotécnicas / Sawing waste characterization of dimension stones for geotechnics applications

Oliveira, Tatiane de 31 August 2015 (has links)
O Brasil ocupa hoje posição de destaque na produção mundial de rochas ornamentais e de revestimento. Essa indústria gera diferentes tipos de resíduos, podendo atingir cerca de 83% de perda de matéria-prima. Nesse contexto o que tem causado mais transtornos é a denominada lama abrasiva, gerada no processo de desdobramento de blocos em placas sendo constituída de água, cal, pó de rocha e restos de limalha de aço e de lâminas. Esse material é produzido em grandes quantidades e pode ser estocado no pátio das empresas, ocupando vastas áreas ou podem ser armazenados em aterros o que é mais oneroso. Com vista a este problema, o objetivo desta pesquisa foi caracterizar o resíduo do corte de blocos de rochas ornamentais visando a possibilidade de diferentes aplicações na geotecnia. Para tanto, foram realizadas a classificação do resíduo conforme ABNT NBR 10004, caracterização química/mineralógica e geotécnica, avaliação de resistência e ensaios da metodologia Miniatura Compactada Tropical (MCT) da lama abrasiva produzida em uma empresa do interior do Estado de São Paulo. A partir desses ensaios foi possível classificar o resíduo como não perigoso e inerte, sendo que os parâmetros geotécnicos indicaram uma granulometria com cerca de 64% de silte, índice de plasticidade de 5%, massa específica dos sólidos de 2,823 g/cm³, massa específica máxima seca de 1,650 g/cm³ com umidade ótima de 21% na energia intermediária e 1,645 g/cm³ com 25,6% de umidade na energia normal. A resistência à compressão simples alcançou aos 28 dias de cura 0,354 MPa com o resíduo puro, 1,174 MPa com 2% de cimento e 2,294 MPa com 5% de cimento. Os ensaios de cisalhamento direto mostraram uma coesão de 54 kPa e 35º de ângulo de atrito. De acordo com a metodologia MCT o resíduo foi classificado como NS\' (silte não laterítico) de baixa permeabilidade que aumentou com o acréscimo de cimento, e baixa perda de suporte por imersão. Em linhas gerais a partir dos ensaios observou-se que esse material pode ter aplicações geotécnicas, mas para tanto outros ensaios deverão ser realizados. / Brazil currently occupies a prominent position in world production of dimension stones and coating. This industry generates different types of waste and may reach 83% loss of the raw material. In this context, the main problem of these wastes is the abrasive slurry, generated in the block sawing process on plates consisting of water, lime, stone powder and abrasive remaining. This material is produced in large quantities and can be stored in the companies courtyards, occupying vast areas or stored in landfills, which is more costly. Thus, the objective of this study was to characterize the waste of cutting blocks of dimension stones analyzing the possibility of different applications in geotechnics. Therefore, it was carried out a environmental classification according ABNT NBR 10004, geotechnical and chemical/mineralogical characterization, strength assessment and Miniature, Compacted, Tropical methodology (MCT) of sawing abrasive slurry in the State of São Paulo. It was found the waste was classified as a non-hazardous and inert. The geotechnical parameters indicated 64% of silt, 5% of plasticity index, 2,823 g/cm³ of density of solids, maximum dry density of 1,650 g/cm³ with optimum moisture content of 21% in the intermediate energy and 1,645 g/cm³ with 25,6% moisture at normal energy. Unconfined compressive strength achieved after 28 days of curing 0,354 MPa with pure residue, 1,174 MPa with 2% of cement and 2,294 MPa with 5% cement. The direct shear tests showed a cohesion of 54 kPa and 35º of friction angle. According to the MCT results the residue was classified as NS\' (silt not lateritic), low permeability\'s that increased with the addition of cement, and a low loss of support by immersion. Thus, it was observed that this material may have geotechnical applications, however should be conducted further testing.

Page generated in 0.0552 seconds