• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 11
  • 11
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Learning und Academic Analytics in Lernmanagementsystemen (LMS)

Gaaw, Stephanie, Stützer, Cathleen M. 27 March 2018 (has links) (PDF)
Der Einsatz digitaler Medien hat in der nationalen Hochschullehre Tradition. Lernmanagementsysteme (LMS), E-Learning, Blended Learning, etc. sind Schlagwörter im Hochschulalltag. Allerdings stellt sich die Frage, was LMS und Blended Learning im Zeitalter digitaler Vernetzung und der herangewachsenen Generation der “Digital Natives” leisten (können bzw. sollen)? Die Verbreitung neuer Technologien im Zusammenhang mit neuen Lehr- und Lernkonzepten wie OER, MOOCS, etc. macht zudem die Entwicklung von Analytics-Instrumenten erforderlich. Das ist auch im nationalen Diskurs von großem Interesse und legt neue Handlungsfelder für Hochschulen offen. Doch es stellt sich die Frage, warum Learning Analytics (LA) bzw. Academic Analytics (AA) bisher nur in einem geringfügigen Maße an deutschen Hochschulen erfolgreich zum Einsatz kommen und warum eine Nutzung insbesondere in LMS, wie zum Beispiel OPAL, nicht ohne Weiteres realisierbar erscheint. Hierzu sollen Einflussfaktoren, die die Implementierung von LA- und AA-Instrumenten hemmen, identifiziert und diskutiert werden. Aufbauend darauf werden erste Handlungsfelder vorgestellt, deren Beachtung eine verstärkte Einbettung von LA- und AA Instrumenten in LMS möglich machen soll.
2

Learning und Academic Analytics in Lernmanagementsystemen (LMS): Herausforderungen und Handlungsfelder im nationalen Hochschulkontext

Gaaw, Stephanie, Stützer, Cathleen M. January 2017 (has links)
Der Einsatz digitaler Medien hat in der nationalen Hochschullehre Tradition. Lernmanagementsysteme (LMS), E-Learning, Blended Learning, etc. sind Schlagwörter im Hochschulalltag. Allerdings stellt sich die Frage, was LMS und Blended Learning im Zeitalter digitaler Vernetzung und der herangewachsenen Generation der “Digital Natives” leisten (können bzw. sollen)? Die Verbreitung neuer Technologien im Zusammenhang mit neuen Lehr- und Lernkonzepten wie OER, MOOCS, etc. macht zudem die Entwicklung von Analytics-Instrumenten erforderlich. Das ist auch im nationalen Diskurs von großem Interesse und legt neue Handlungsfelder für Hochschulen offen. Doch es stellt sich die Frage, warum Learning Analytics (LA) bzw. Academic Analytics (AA) bisher nur in einem geringfügigen Maße an deutschen Hochschulen erfolgreich zum Einsatz kommen und warum eine Nutzung insbesondere in LMS, wie zum Beispiel OPAL, nicht ohne Weiteres realisierbar erscheint. Hierzu sollen Einflussfaktoren, die die Implementierung von LA- und AA-Instrumenten hemmen, identifiziert und diskutiert werden. Aufbauend darauf werden erste Handlungsfelder vorgestellt, deren Beachtung eine verstärkte Einbettung von LA- und AA Instrumenten in LMS möglich machen soll.
3

Definição de um modelo de referência de dados educacionais para a descoberta de conhecimento / Definition of an educational data reference model for knowledge discovery

Borges, Vanessa Araujo 04 October 2017 (has links)
Sistemas educacionais possuem diversas funcionalidades capazes de apoiar a interação entre alunos e professores de maneira dinâmica, síncrona e assíncrona. Uma das formas de monitorar a eficácia do processo educacional e por meio da utilização dos dados armazenados nesses sistemas como fonte de informação. Pesquisas em Learning Analytics, Academic Analytics e Mineração de Dados Educacionais, buscam explorar os dados de sistemas educacionais utilizando processamento analítico e técnicas de mineração de dados. No entanto, há uma serie de fatores que dificultam a gestão eficiente do processo educacional a partir dos dados de sistemas educacionais. A transformação de dados provenientes de diferentes tipos de sistemas educacionais, como Sistemas de Gestão de Aprendizagem e Sistemas Acadêmicos, e uma tarefa complexa devido a natureza heterogênea dos dados. Dados provenientes desses sistemas podem ser analisados considerando diferentes stakeholders, sob varias perspectivas e níveis de granularidade. Neste cenário, um modelo de referência para a descoberta de conhecimento a partir de dados de sistemas educacionais, denominado Modelo de Referência de Dados Educacionais (EDRM), foi desenvolvido neste trabalho. O EDRM e um modelo dimensional no formato star schema, estruturado em um Data Warehouse, projetado para ser uma fonte única de dados integrados e correlacionados voltada a tomada de decisão. Assim, e possível armazenar dados de diversas fontes, combina-los e, por fim, realizar analises que levem as instituições a desenvolver uma melhor compreensão, rastrear tendências e descobrir lacunas e ineficiências acerca do processo educacional. Neste trabalho, o EDRM foi validado por meio de um estudo de caso, utilizando bases de dados reais coletadas de diferentes sistemas educacionais. Os resultados mostram que o EDRM e eficiente em tarefas com diferentes objetivos, utilizando processamento analítico e mineração de dados. / Educational systems support dynamic, synchronous and asynchronous interaction between students and educators. Researches in Learning Analytics, Academic Analytics and Educational Data Mining explore data from educational systems for knowledge discovery through analytical processing, statistical analysis and data mining. However, there are some factors that hinder an efficient management of the educational process. The transformation of data from different kinds of educational system, as Learning Management Systems and Student Information Systems, can be even more difficult due to data heterogeneity. Data from these systems can be analyzed considering different stakeholders, under different perspectives and under different granularities. Motivated by this scenario, in this work we propose Modelo de Referência de Dados Educacionais (EDRM), a reference data model for knowledge discovery in data from educational systems. EDRM is an analytical model structured under a Data Warehouse architecture following a multidimensional data model. EDRM is projected for being an resource of integrated and correlated data focused in decision taking in the educational process. EDRM was developed considering a deep analysis of data and functionalities from different educational systems. In this sense, data from different kinds of systems and sources can be used unified, integrated and consistently. This allows institutions to better comprehend their data, as well as discover patterns, gaps and inefficiencies about their educational process. In this work, EDRM was validated in a case study using real-world databases from different educational systems. The results indicate that EDRM is efficient in tasks with different objectives, using Learning Analytics and Educational Data Mining techniques, and analyzing different perspectives.
4

Definição de um modelo de referência de dados educacionais para a descoberta de conhecimento / Definition of an educational data reference model for knowledge discovery

Vanessa Araujo Borges 04 October 2017 (has links)
Sistemas educacionais possuem diversas funcionalidades capazes de apoiar a interação entre alunos e professores de maneira dinâmica, síncrona e assíncrona. Uma das formas de monitorar a eficácia do processo educacional e por meio da utilização dos dados armazenados nesses sistemas como fonte de informação. Pesquisas em Learning Analytics, Academic Analytics e Mineração de Dados Educacionais, buscam explorar os dados de sistemas educacionais utilizando processamento analítico e técnicas de mineração de dados. No entanto, há uma serie de fatores que dificultam a gestão eficiente do processo educacional a partir dos dados de sistemas educacionais. A transformação de dados provenientes de diferentes tipos de sistemas educacionais, como Sistemas de Gestão de Aprendizagem e Sistemas Acadêmicos, e uma tarefa complexa devido a natureza heterogênea dos dados. Dados provenientes desses sistemas podem ser analisados considerando diferentes stakeholders, sob varias perspectivas e níveis de granularidade. Neste cenário, um modelo de referência para a descoberta de conhecimento a partir de dados de sistemas educacionais, denominado Modelo de Referência de Dados Educacionais (EDRM), foi desenvolvido neste trabalho. O EDRM e um modelo dimensional no formato star schema, estruturado em um Data Warehouse, projetado para ser uma fonte única de dados integrados e correlacionados voltada a tomada de decisão. Assim, e possível armazenar dados de diversas fontes, combina-los e, por fim, realizar analises que levem as instituições a desenvolver uma melhor compreensão, rastrear tendências e descobrir lacunas e ineficiências acerca do processo educacional. Neste trabalho, o EDRM foi validado por meio de um estudo de caso, utilizando bases de dados reais coletadas de diferentes sistemas educacionais. Os resultados mostram que o EDRM e eficiente em tarefas com diferentes objetivos, utilizando processamento analítico e mineração de dados. / Educational systems support dynamic, synchronous and asynchronous interaction between students and educators. Researches in Learning Analytics, Academic Analytics and Educational Data Mining explore data from educational systems for knowledge discovery through analytical processing, statistical analysis and data mining. However, there are some factors that hinder an efficient management of the educational process. The transformation of data from different kinds of educational system, as Learning Management Systems and Student Information Systems, can be even more difficult due to data heterogeneity. Data from these systems can be analyzed considering different stakeholders, under different perspectives and under different granularities. Motivated by this scenario, in this work we propose Modelo de Referência de Dados Educacionais (EDRM), a reference data model for knowledge discovery in data from educational systems. EDRM is an analytical model structured under a Data Warehouse architecture following a multidimensional data model. EDRM is projected for being an resource of integrated and correlated data focused in decision taking in the educational process. EDRM was developed considering a deep analysis of data and functionalities from different educational systems. In this sense, data from different kinds of systems and sources can be used unified, integrated and consistently. This allows institutions to better comprehend their data, as well as discover patterns, gaps and inefficiencies about their educational process. In this work, EDRM was validated in a case study using real-world databases from different educational systems. The results indicate that EDRM is efficient in tasks with different objectives, using Learning Analytics and Educational Data Mining techniques, and analyzing different perspectives.
5

Academic Analytics in Higher Education: Barriers to Adoption

Pomeroy, Willie L. 01 January 2014 (has links)
The analysis of big data points and the use of data analytics have proven successful in improving corporate business efficiencies, growing profits, and increasing competitive advantages. The theory of academic capitalism, which holds that institutions of higher education are becoming more like corporations due to declining operating funds and the need to become more efficient, transparent, and competitive, guided this study. Despite the positive outcomes that analytic tools may produce in advanced efficiencies and competitive growth, college academic administrators have not yet adopted these tools, due in part to barriers facing the administrators. The purpose of this phenomenological study was to explore the nature of those barriers in a community college. Ten academic managers in 6 community college divisions who reported accountability for criterion-based key performance indicators were interviewed on their perceived use of academic analytic tools and barriers in adopting these tools. The interviews were collected and analyzed through preliminary grouping, reducing and eliminating outliers, clustering descriptions into categories, and constructing themes. The managers' narratives suggested that there were 4 perceived barriers that prevented the adoption of tools such as organizational bureaucracy (climate), restricted organizational data (policy), training, and infrastructure. An important area for further research involves identifying the strategies managers could use to overcome these barriers. The findings of this study will assist college administrators in implementing analytic tools. Such tools will improve key performance indicators, resulting in a more cohesive and cost-effective academic experience for students, faculty, administrators, and the community.
6

Informations- und Wissenstransfer in kollaborativen Lernsystemen / Distribution of Information and Knowledge in Collaborative Learning Systems. Structural and Relational Analysis about the Impact of Social Organizational Structures in Knowledge Networks in the Case of the Web Based Collaborative Learning System in Higher Education called OPAL

Stützer, Cathleen M. 11 December 2013 (has links) (PDF)
In der Netzwerkgesellschaft des 21. Jahrhunderts gilt die kollaborative Verteilung und Nutzung von Information und Wissen als Schlüsselstrategie für den webbasierten Informations- und Wissenstransfer. Durch die technologischen Möglichkeiten werden technische Zugangsbarrieren weitestgehend überwunden und traditionelle Formen der Wissensvermittlung durch moderne webbasierte Lernumgebungen ergänzt. Der Umgang mit kollaborativen Lehr- und Lernszenarien im dynamischen Informations- und Wissenstransfer bildet die Grundlage für den soziokulturellen Fortschritt innerhalb der Bildungsforschung. Der Schwerpunkt dieser Arbeit lag auf der strukturellen und relationalen Analyse sozialer Organisationsstrukturen innerhalb von Wissensnetzwerken. Ziel war es, Einflussfaktoren offenzulegen, die sich auf das Innovations- und Distributionspotential von Information und Wissen innerhalb von kollaborativen Wissensnetzwerken auswirken. Es wurden dazu Interaktionsprozesse von Teilnehmern innerhalb von Diskussionsforen am Beispiel der Lernplattform OPAL – dem aktuell populärsten Lernmanagementsystem in der Hochschulbildung Sachsens, Deutschland – untersucht. Unter der Annahme, dass soziale Interaktion besonders im Umgang mit kollaborativen Medien den Bildungsablauf und der Aufbau von Wissensnetzwerken die Lehr- und Lernprozesse beeinflusst, wurden in dieser Arbeit die strukturellen Bedingungen des kollaborativen Wissensnetzwerkes in OPAL exploriert und soziale Rollenkonstrukte relational identifiziert, um die Auswirkungen kollaborativer Aktivitäten auf den Informations- und Wissenstransfer in Wissensnetzwerken zu erklären. Es wurden vornehmlich beziehungsorientierte kommunikationstheoretische Modelle zugrunde gelegt und relationale Forschungsmethoden wie SNA (Social Network Analysis) und DNA (Dynamic Network Analysis) angewandt, um eine Basis für die weiterführende Implementierung sozial vernetzter Lehr- und Lernstrategien in der Bildungsforschung zu schaffen. […] / In the network society of the 21st century, a key strategy for web-based exchange of information and knowledge is their collaborative distribution and use. Technical hurdles of access are mostly being overcome with technological advances and traditional forms of passing on knowledge are being complemented by modern, e-learning environments. Within research into education, the foundation for socio-cultural progress is formed by involvement with collaborative teaching and learning scenarios in a dynamic exchange of information and knowledge. The emphasis of this work lay in the analysis of structures and relationships of social organisations within knowledge networks. The aim was to describe the exchange of information and knowledge in collaborative learning systems and to explore its influence on the potential for innovation and distribution of information and knowledge. A study was undertaken of the interaction of participants in discussion forums as exemplified by the learning platform OPAL – currently the most popular learning management system in secondary school education in Saxony, Germany. On the assumption that social interaction, particularly involving collaborative media, the progress of education and the construction of knowledge networks do influence teaching and learning processes, this work explored the structural conditions of OPAL's collaborative knowledge network and identified relationships between social role constructs in order to explain the effect of collaborative activities on the process of diffusion of information and knowledge in knowledge networks. Primarily the study was based on relationship oriented sociological models and communication theory models, and research methods for relationships, including SNA (Social Network Analysis) and DNA (Dynamic Network Analysis) were applied, so as to create a basis for further implementation of social network teaching and learning strategies in educational research. [...]
7

Applying Academic Analytics: Developing a Process for Utilizing Bayesian Networks to Predict Stopping Out Among Community College Students

January 2015 (has links)
abstract: Many methodological approaches have been utilized to predict student retention and persistence over the years, yet few have utilized a Bayesian framework. It is believed this is due in part to the absence of an established process for guiding educational researchers reared in a frequentist perspective into the realms of Bayesian analysis and educational data mining. The current study aimed to address this by providing a model-building process for developing a Bayesian network (BN) that leveraged educational data mining, Bayesian analysis, and traditional iterative model-building techniques in order to predict whether community college students will stop out at the completion of each of their first six terms. The study utilized exploratory and confirmatory techniques to reduce an initial pool of more than 50 potential predictor variables to a parsimonious final BN with only four predictor variables. The average in-sample classification accuracy rate for the model was 80% (Cohen's κ = 53%). The model was shown to be generalizable across samples with an average out-of-sample classification accuracy rate of 78% (Cohen's κ = 49%). The classification rates for the BN were also found to be superior to the classification rates produced by an analog frequentist discrete-time survival analysis model. / Dissertation/Thesis / Doctoral Dissertation Educational Psychology 2015
8

Academic Analytics: Zur Bedeutung von (Big) Data Analytics in der Evaluation

Stützer, Cathleen M. 03 September 2020 (has links)
Im Kontext der Hochschul- und Bildungsforschung wird Evaluation in ihrer Gesamtheit als Steuerungs- und Controlling-Instrument eingesetzt, um unter anderem Aussagen zur Qualität von Lehre, Forschung und Administration zu liefern. Auch wenn der Qualitätsbegriff an den Hochschulen bislang noch immer sehr unterschiedlich geführt wird, verfolgen die Beteiligten ein einheitliches Ziel – die Evaluation als zuverlässiges (internes) Präventions- und VorhersageInstrument in den Hochschulalltag zu integrieren. Dass dieses übergeordnete Ziel mit einigen Hürden verbunden ist, liegt auf der Hand und wird in der Literatur bereits vielfältig diskutiert (Benneworth & Zomer 2011; Kromrey 2001; Stockmann & Meyer 2014; Wittmann 2013). Die Evaluationsforschung bietet einen interdisziplinären Forschungszugang. Instrumente und Methoden aus unterschiedlichen (sozialwissenschaftlichen) Disziplinen, die sowohl qualitativer als auch quantitativer Natur sein können, kommen zum Einsatz. Mixed Method/Multi Data–Ansätze gelten dabei – trotz des unstreitbar höheren Erhebungs- und Verwertungsaufwandes – als besonders einschlägig in ihrer Aussagekraft (Döring 2016; Hewson 2007). Allerdings finden (Big) Data Analytics, Echtzeit- und Interaktionsanalysen nur sehr langsam einen Zugang zum nationalen Hochschul- und Bildungssystem. Der vorliegende Beitrag befasst sich mit der Bedeutung von (Big) Data Analytics in der Evaluation. Zum einen werden Herausforderungen und Potentiale aufgezeigt – zum anderen wird der Frage nachgegangen, wie es gelingen kann, (soziale) Daten (automatisiert) auf unterschiedlichen Aggregationsebenen zu erheben und auszuwerten. Es werden am Fallbeispiel der Evaluation von E-Learning in der Hochschullehre geeignete Erhebungsmethoden, Analyseinstrumente und Handlungsfelder vorgestellt. Die Fallstudie wird dabei in den Kontext der Computational Social Science (CSS) überführt, um einen Beitrag zur Entwicklung der Evaluationsforschung im Zeitalter von Big Data und sozialen Netzwerken zu leisten.
9

Informations- und Wissenstransfer in kollaborativen Lernsystemen: Eine strukturelle und relationale Analyse über den Einfluss sozialer Organisationsstrukturen in Wissensnetzwerken am Beispiel der Lernplattform OPAL

Stützer, Cathleen M. 03 December 2013 (has links)
In der Netzwerkgesellschaft des 21. Jahrhunderts gilt die kollaborative Verteilung und Nutzung von Information und Wissen als Schlüsselstrategie für den webbasierten Informations- und Wissenstransfer. Durch die technologischen Möglichkeiten werden technische Zugangsbarrieren weitestgehend überwunden und traditionelle Formen der Wissensvermittlung durch moderne webbasierte Lernumgebungen ergänzt. Der Umgang mit kollaborativen Lehr- und Lernszenarien im dynamischen Informations- und Wissenstransfer bildet die Grundlage für den soziokulturellen Fortschritt innerhalb der Bildungsforschung. Der Schwerpunkt dieser Arbeit lag auf der strukturellen und relationalen Analyse sozialer Organisationsstrukturen innerhalb von Wissensnetzwerken. Ziel war es, Einflussfaktoren offenzulegen, die sich auf das Innovations- und Distributionspotential von Information und Wissen innerhalb von kollaborativen Wissensnetzwerken auswirken. Es wurden dazu Interaktionsprozesse von Teilnehmern innerhalb von Diskussionsforen am Beispiel der Lernplattform OPAL – dem aktuell populärsten Lernmanagementsystem in der Hochschulbildung Sachsens, Deutschland – untersucht. Unter der Annahme, dass soziale Interaktion besonders im Umgang mit kollaborativen Medien den Bildungsablauf und der Aufbau von Wissensnetzwerken die Lehr- und Lernprozesse beeinflusst, wurden in dieser Arbeit die strukturellen Bedingungen des kollaborativen Wissensnetzwerkes in OPAL exploriert und soziale Rollenkonstrukte relational identifiziert, um die Auswirkungen kollaborativer Aktivitäten auf den Informations- und Wissenstransfer in Wissensnetzwerken zu erklären. Es wurden vornehmlich beziehungsorientierte kommunikationstheoretische Modelle zugrunde gelegt und relationale Forschungsmethoden wie SNA (Social Network Analysis) und DNA (Dynamic Network Analysis) angewandt, um eine Basis für die weiterführende Implementierung sozial vernetzter Lehr- und Lernstrategien in der Bildungsforschung zu schaffen. […] / In the network society of the 21st century, a key strategy for web-based exchange of information and knowledge is their collaborative distribution and use. Technical hurdles of access are mostly being overcome with technological advances and traditional forms of passing on knowledge are being complemented by modern, e-learning environments. Within research into education, the foundation for socio-cultural progress is formed by involvement with collaborative teaching and learning scenarios in a dynamic exchange of information and knowledge. The emphasis of this work lay in the analysis of structures and relationships of social organisations within knowledge networks. The aim was to describe the exchange of information and knowledge in collaborative learning systems and to explore its influence on the potential for innovation and distribution of information and knowledge. A study was undertaken of the interaction of participants in discussion forums as exemplified by the learning platform OPAL – currently the most popular learning management system in secondary school education in Saxony, Germany. On the assumption that social interaction, particularly involving collaborative media, the progress of education and the construction of knowledge networks do influence teaching and learning processes, this work explored the structural conditions of OPAL's collaborative knowledge network and identified relationships between social role constructs in order to explain the effect of collaborative activities on the process of diffusion of information and knowledge in knowledge networks. Primarily the study was based on relationship oriented sociological models and communication theory models, and research methods for relationships, including SNA (Social Network Analysis) and DNA (Dynamic Network Analysis) were applied, so as to create a basis for further implementation of social network teaching and learning strategies in educational research. [...]
10

[en] APPLYING PROCESS MINING TO THE ACADEMIC ADMINISTRATION DOMAIN / [pt] APLICAÇÃO DE MINERAÇÃO DE PROCESSOS AO DOMÍNIO ACADÊMICO ADMINISTRATIVO

HAYDÉE GUILLOT JIMÉNEZ 12 December 2017 (has links)
[pt] As instituições de ensino superior mantêm uma quantidade considerável de dados que incluem tanto os registros dos alunos como a estrutura dos currículos dos cursos de graduação. Este trabalho, adotando uma abordagem de mineração de processos, centra-se no problema de identificar quão próximo os alunos seguem a ordem recomendada das disciplinas em um currículo de graduação, e até que ponto o desempenho de cada aluno é afetado pela ordem que eles realmente adotam. O problema é abordado aplicando-se duas técnicas já existentes aos registros dos alunos: descoberta de processos e verificação de conformidade; e frequência de conjuntos de itens. Finalmente, a dissertação cobre experimentos realizados aplicando-se essas técnicas a um estudo de caso com mais de 60.000 registros de alunos da PUC-Rio. Os experimentos indicam que a técnica de frequência de conjuntos de itens produz melhores resultados do que as técnicas de descoberta de processos e verificação de conformidade. E confirmam igualmente a relevância de análises baseadas na abordagem de mineração de processos para ajudar coordenadores acadêmicos na busca de melhores currículos universitários. / [en] Higher Education Institutions keep a sizable amount of data, including student records and the structure of degree curricula. This work, adopting a process mining approach, focuses on the problem of identifying how closely students follow the recommended order of the courses in a degree curriculum, and to what extent their performance is affected by the order they actually adopt. It addresses this problem by applying to student records two already existing techniques: process discovery and conformance checking, and frequent itemsets. Finally, the dissertation covers experiments performed by applying these techniques to a case study involving over 60,000 student records from PUC-Rio. The experiments show that the frequent itemsets technique performs better than the process discovery and conformance checking techniques. They equally confirm the relevance of analyses based on the process mining approach to help academic coordinators in their quest for better degree curricula.

Page generated in 0.0878 seconds