• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 365
  • 71
  • 52
  • 31
  • 26
  • 25
  • 18
  • 15
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 700
  • 192
  • 172
  • 113
  • 76
  • 76
  • 65
  • 64
  • 60
  • 59
  • 57
  • 56
  • 56
  • 54
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Active Matter in Confined Geometries - Biophysics of Artificial Minimal Cortices

Hubrich, Hanna 07 December 2020 (has links)
No description available.
272

Subcellular effects of pavetamine on rat cardiomyocytes

Ellis, Charlotte Elizabeth 05 January 2011 (has links)
The aim of this study was to investigate the mode of action of pavetamine on rat cardiomyocytes. Pavetamine is the causative agent of gousiekte (“quick-disease”), a disease of ruminants characterized by acute heart failure following ingestion of certain rubiaceous plants. Two in vitro rat cardiomyocyte models were utilized in this study, namely the rat embryonic cardiac cell line, H9c2, and primary neonatal rat cardiomyocytes. Cytotoxicity of pavetamine was evaluated in H9c2 cells using the MTT and LDH release assays. The eventual cell death of H9c2 cells was due to necrosis, with LDH release into the culture medium after exposure to pavetamine for 72 h. Pavetamine did not induce apoptosis, as the typical features of apoptosis were not observed. Electron microscopy was employed to study ultrastructural alterations caused by pavetamine in H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormalities after 48 h exposure of the cells to pavetamine. Abundant secondary lysosomes with electron dense material were present in treated cells. Numerous vacuoles were also present in treated cells, indicative of autophagy. During this exposure time, the nuclei appeared normal, with no chromatin condensation as would be expected for apoptosis. Abnormalities in the morphology of the nuclei were only evident after 72 h exposure. The nuclei became fragmented and plasma membrane blebbing occurred. The mitochondrial membrane potential was investigated with a fluorescent probe, which demonstrated that pavetamine caused significant hyperpolarization of the mitochondrial membrane, in contrast to the depolarization caused by apoptotic inducers. Pavetamine did not cause opening of the mitochondrial permeability transition pore, because cyclosporine A, which is an inhibitor of the mitochondrial permeability transition pore, did not reduce the cytotoxicity of pavetamine significantly. Fluorescent probes were used to investigate subcellular changes induced by pavetamine in H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormal features compared to the control cells, which is consistent with the electron microscopy studies. The lysosomes of treated cells were more abundant and enlarged. The activity of cytosolic hexosaminidase was nearly three times higher in the treated cells than in the control cells, which suggested increased lysosomal membrane permeability. The activity of acid phosphatase was also increased in comparison to the control cells. In addition, the organization of the cytoskeletal F-actin of treated cells was severely affected by pavetamine. Rat neonatal cardiomyocytes were labelled with antibodies to detect the three major contractile proteins (titin, actin and myosin) and cytoskeletal proteins (F-actin, desmin and β-tubulin). Cells treated with pavetamine had degraded myosin and titin, with altered morphology of sarcomeric actin. Vacuoles appeared in the β-tubulin network, but the appearance of desmin was normal. F-actin was severely disrupted in cardiomyocytes treated with pavetamine and was degraded or even absent in treated cells. Ultrastructurally, the sarcomeres of rat neonatal cardiomyocytes exposed to pavetamine were disorganized and disengaged from the Z-lines, which can also be observed in the hearts of ruminants that have died of gousiekte. It is concluded that the pathological alteration to the major contractile and cytoskeleton proteins caused by pavetamine could explain the cardiac dysfunction that characterizes gousiekte. F-actin is involved in protein synthesis and therefore can play a role in the inhibition of protein synthesis in the myocardium of ruminants suffering from gousiekte. Apart from inhibition of protein synthesis in the heart, there is also increased degradation of cardiac proteins in an animal with gousiekte. The mitochondrial damage will lead to an energy deficiency and possibly to generation of reactive oxygen species. The sarcoplasmic reticula are involved in protein synthesis and any damage to them will affect protein synthesis, folding and post-translational modifications. This will activate the unfolded protein response (UPR) and sarcoplasmic reticula-associated protein degradation (ERAD). If the oxidizing environment of the sarcoplasmic reticula is disturbed, it will activate the ubiquitin-proteasome pathway (UPP) to clear aggregated and misfolded proteins. Lastly, the mitochondria, sarcoplasmic reticula and F-actin are involved in calcium homeostasis. Any damage to these organelles will have a profound influence on calcium flux in the heart and will further contribute to the contractile dysfunction that characterizes gousiekte. / Thesis (PhD)--University of Pretoria, 2010. / Paraclinical Sciences / unrestricted
273

The role of SWAP-70 in cancer metastasis and tumor immunity

Chang, Chao-Yuan 13 November 2023 (has links)
Cancer metastasis accounts for approximately 90% of all cancer-related deaths; however, the underlying mechanisms remain largely unknown. It has been known proteins that control F-actin dynamics are crucial for cancer metastasis. In this study, we revealed how an F-actin binding protein, Switch-associated protein 70 (SWAP-70), contributes to breast cancer metastasis. Moreover, immunotherapy is a promising approach to treat metastatic cancer cells by enhancing the function of the host immune system against cancer. Our lab has conducted extensive studies on how SWAP-70 regulates the function of several immune cell types, including dendritic cells (DCs), B cells, and mast cells. These cells have been reported to contribute to tumor immunity. Thus, we hypothesized that SWAP-70 plays a role in tumor immunity. To characterize the function of SWAP-70 in metastasis, we generated 4T1, mouse breast cancer, SWAP-70 knockout (KO) cells using Crispr/Cas9 technology. A syngeneic orthotopic model was used to recapitulate clinical disease progression, and the results showed that SWAP-70 led to significant metastasis to the lungs and bones in immunocompetent mice. Several functional assays have revealed that SWAP-70 promotes anchorage-independent growth, cell migration, invasion, and adhesion in 4T1 cells. Biophysical measurements showed that SWAP-70 contributes to cellular mechanics. To investigate how SWAP-70 in host cells affects tumor immunity, SWAP-70 deficient mice were injected with E0771 mouse breast cancer cells to study tumorigenicity. SWAP-70 deficient mice showed delayed primary tumor growth and less distant metastasis. Isolated SWAP-70−/− DCs were impaired in generating CD8 T cell responses pulsed with soluble OVA protein, but not with OVA peptide, suggesting that the antigen uptake, processing, and presentation process in SWAP-70−/− DCs may be diminished. Taken together, our findings describe the potential mechanisms by which the loss of SWAP-70 hinders cancer metastasis and provide several insights into how targeting SWAP-70 could be a potential therapeutic approach to target cancer.
274

Editorial: Editor’s Pick 2021: Highlights in Cell Adhesion and Migration

Mierke, Claudia Tanja 03 April 2023 (has links)
Editorial on the Research Topic. Editorial: Editor’s Pick 2021: Highlights in Cell Adhesion and Migration.
275

DIS1 AND DIS2 PLAY A ROLE IN TROPISMS IN ARABIDOPSIS THALIANA

Reboulet, James Christopher 19 August 2008 (has links)
No description available.
276

Probing the roles of actin dynamics in the cytoskeleton of animal and plant cells

June hyung Kim (18432030) 26 April 2024 (has links)
<p dir="ltr">The actin cytoskeleton is a dynamic structure that regulates various important cellular processes, such as cell protrusion, migration, transport, and cell shape changes. Cells employ different actin architectures best suited for each of these functions. We have employed an agent-based model to illuminate how the actin cytoskeleton plays such functions in animal and plant cells, via dynamic interactions between molecular players.</p><p dir="ltr">Lamellipodia found in animal cells are two-dimensional actin protrusion formed on the leading edge of cells, playing an important role in sensing surrounding mechanical environments via focal adhesions. Various molecular players, architecture, and dynamics of the lamellipodia have been investigated extensively during recent decades. Nevertheless, it still remains elusive how each component in the lamellipodia mechanically interacts with each other to attain a stable, dynamic steady state characterized by a retrograde flow emerging in the branched actin network. Using the agent-based model, we investigated how the balance between different subcellular processes is achieved for the dynamic steady state. We simulated a branched network found in the lamellipodia, consisting of actin filament (F-actin), myosin motor, Arp2/3 complex, and actin crosslinking protein. We found the importance of a balance between F-actin assembly at the leading edge of cells and F-actin disassembly at the rear end of the lamellipodia. We also found that F-actin severing is crucial to allow for the proper disassembly of an actin bundle formed via network contraction induced by motor activity. In addition, it was found that various dynamic steady states can exist.</p><p dir="ltr">The actin cytoskeleton in plant cells plays a crucial role in intracellular transport and cytoplasmic streaming, and its structure is very different from the actin cytoskeleton in animal cells. The plant actin cytoskeleton is known to show distinct dynamic behaviors with homeostasis. We used the agent-based model to simulate the plant actin cytoskeleton with the consideration of the key governing mechanisms, including F-actin polymerization/depolymerization, different types of F-actin nucleation events, severing, and capping. We succeeded in reproducing experimental observations in terms of F-actin density, length, nucleation frequency, and rates of severing, polymerization, and depolymerization. We found that the removal of nucleators results in lower F-actin density in the network, which supports recent experimental findings.</p>
277

Synthetic peptides modulate epithelial junctions

Yi, Sheng January 1900 (has links)
Master of Science / Department of Biochemistry / Bruce D. Schultz / John M. Tomich / Peptides based on the second transmembrane segment of the glycine receptor (M2GlyR) were made to provide a potential therapeutic treatment for cystic fibrosis (CF) and a latent absorption enhancer for drug delivery. For similarity of presentation, unique synthetic peptide sequences have been given alpha-numeric designations. Results are presented from studies focusing on four peptides. In the first study, the contributions of synthetic peptides p1171, p1172 and p1173 to net transepithelial ion transport were measured as a first step toward the goal of testing whether pore length or electrostatics of pore lining residues will affect anion transport. Peptide p1130 exhibits many attributes that make it an ideal synthetic peptide for CF treatment, but has low permselectivity for anions. Therefore, it is used as a platform for modification. Peptide p1171 is doubly substituted with diaminopropionic acid at positions T13 and T17. Peptide p1172 and p1173 are separately one and two helical turn(s) inserted into the p1130 backbone. Apical exposure of MDCK monolayers to these peptides caused a rapid increase in short circuit current (Isc), an indicator of net ion transport. The increase in Isc caused by p1172 or p1173 was accompanied by increase in transepithelial electrical conductance (gte). The electrophysiological results suggested that these modified peptides can assemble in the apical membrane of epithelial cells to form functional ion-conducting pores. Peptide NC-1059, which provides for ion transport across epithelial cells derived from many sources, was studied further to assess cellular changes that account for increased gte. NC-1059 increased Isc, gte and enhanced permeation of dextrans in a concentration dependent manner. Results from previous and current studies show that NC-1059 modulated the epithelial paracellular pathway by altering the distribution and abundance of junctional proteins. Immunoblotting and immunolabeling with confocal microscopy showed that NC-1059 induces reorganization of actin and causes a reduction in F-actin abundance in epithelial cells. The distributions were changed and cellular abundances were reduced of tight junction proteins occludin and ZO-1 and adherens junction proteins E-cadherin and β-catenin by NC-1059. These effects were largely reversed in 24 hr and fully recovered in 48 hr. Therefore, NC-1059 has the therapeutic potential to increase the efficiency of drug delivery across barrier membranes.
278

The identification of a new molecular tool to investigate the role of actin and microtubule cytoskeletons in the endocytosis pathway of the pathogenic fungus Ustilago maydis

Clark, Natalie January 2014 (has links)
Endocytosis is essential for the pathogenic development of Ustilago maydis. It has been shown that the initiation of pathogenicity relies upon the ability of the cell to recognize pheromone (a1 or a2) released from its mating partner and subsequently to form conjugated hyphae. The actin and microtubule cytoskeleton plays an essential role in all aspects of cell growth. A component of the actin cytoskeleton, the filamentous actin is required for cell-cell fusion, whereas the molecular motors, kinesin and dynein, move along microtubules and provide the long distance transport of many proteins and they are important in cell growth and pathogenicity. In this thesis, we investigated the role of the cytoskeleton in endocytosis and a1 pheromone transport, using a fluorescently labelled derivative of the a1 pheromone. We confirmed that uptake of the a1 pheromone is also receptormediated. In addition, we have shown that pheromone transport towards the cellular vacuole requires the actin and microtubule cytoskeletons. Furthermore, we revealed that the microtubule-dependent motors kinesin-1 and kinesin-3 and dynein were shown to be essential in the delivery of the pheromone to vacuoles. Moreover, a mutation in the early endosomal protein Yup1 gene causes a stop in delivery of the synthetic pheromone to the vacuole. This suggests that it travels with early endosomes. Within the actin cytoskeleton, we analysed the dynamics of actin patches in the presence of the synthetic pheromone and found that the dynamics of the patches increased significantly. Additionally, in the presence of an over-expression of the tail domain of the molecular motor myosin-5, the dynamics of the patches were significantly reduced and their intensity diminished.
279

An Atat1/Mec-17-Myosin II axis controls ciliogenesis

Rao, Yanhua January 2013 (has links)
<p>Primary cilia are evolutionarily conserved, acetylated microtubule-based organelles that transduce mechanical and chemical signals. Primary cilium assembly is tightly controlled and its deregulation causes a spectrum of human diseases. Formation of primary cilium is a collaborative effort of multiple cellular machineries, including microtubule, actin network and membrane trafficking. How cells coordinate these components to construct the primary cilia remains unclear. In this dissertation research, we utilized a combination of cell biology, biochemistry and light microscopy technologies to tackle the enigma of primary cilia formation, with particular focus on isoform-specific roles of non-muscle myosin II family members. We found that myosin IIB (Myh10) is required for cilium formation. In contrast, myosin IIA (Myh9) suppresses cilium formation. In Myh10 deficient cells, Myh9 inactivation significantly restores cilia formation. Myh10 antagonizes Myh9 and increases actin dynamics, permitting pericentrosomal preciliary complex formation required for cilium assembly. Importantly, Myh10 is upregulated upon serum starvation-induced ciliogenesis and this induction requires Atat1/Mec-17, the microtubule acetyltransferase. Our findings suggest that Atat1/Mec17-mediated microtubule acetylation is coupled to Myh10 induction, whose accumulation overcomes the Myh9-dependent actin cytoskeleton, thereby activating cilium formation. Thus, Atat1/Mec17 and myosin II coordinate microtubules and the actin cytoskeleton to control primary cilium biogenesis.</p> / Dissertation
280

Morphological, cellular and proteomic features of canine myxomatous mitral valve disease

Han, Richard I-Ming January 2009 (has links)
Myxomatous mitral valve degeneration (MMVD) is the single most common cardiac disease of the dog, and is analogous to Mitral Valve Prolapse in humans. Very little is known about the aetiopathogenesis of this disease or the changes in valvular interstitial cell populations in diseased valves. The aim of this study was to identify morphological, cellular and molecular changes associated with MMVD. Mitral valve leaflets from both normal and varying grades (Whitney’s 1-4) of diseased dogs were subject to image analysis, immunophenotyping, proteomics and RT-PCR. Image analysis - leaflet thickening due to accumulation of glycosaminoglycan was significant in this disease. MMVD is associated with loss of connective tissue, reduction in cell numbers but no change in cell shape in the overtly myxomatous area. Near the surface, increase in valvular interstitial cells (VIC) towards the damaged endothelium in concert with destruction of collagen and building up of ground substance was manifested during the disease process. Immunophenotyping - activated myofibroblasts were increased and fibroblast-like VICs were reduced without any change in desmin and myosin expression in MMVD compared to clinical normal dogs. In addition, other cell types like macrophage, adipocyte, chondrocyte, mast cell, and stem cell were identified and their possible role in MMVD is discussed. Proteomics - a protein expression profile was established, with 64 proteins being positively identified from dog’s mitral valve using 1-D SDS PAGE LC/MS. Amongst them 44 proteins were differentially expressed comparing normal and severely diseased. Two actin binding proteins, tropomyosin alpha and myosin light chain-2 were found to be differentially expressed in the normal but down regulated in the diseased. RT-PCR was used to assess the expression of 8 genes of interest. Their expression was compared with 3 different housekeeping genes.

Page generated in 0.0617 seconds