Spelling suggestions: "subject:"activationinduced cytidine deaminase"" "subject:"deprivationinduced cytidine deaminase""
1 |
Molecular mechanisms controlling immunoglobulin class switch recombination / Mécanismes moléculaires régulant la commutation isotypique des immunoglobulinesSchiavo, Ebe 30 September 2013 (has links)
Lors des réponses immunitaires, le répertoire des lymphocytes B est diversifié par l’hypermutation somatique (HMS) et la commutation isotypique (CI), dépendant d’«activation-induced cytidine deaminase» (AID), qui introduit des lésions dans les gènes Ig. Une déficience d’AID cause un défaut d’HMS et de CI; par contre, une délétion du domaine C-terminal d’AID cause un défaut spécifique de la CI, suggérant que ce domaine interagit avec des facteurs spécifiques de la CI. Pour identifier ces facteurs, nous avons étudié une immunodéficience présentant un défaut de la CI non lié à la carence d’AID ni à un défaut d’HMS. De plus, les cassures de l’ADN ne sont pas détectées au niveau des gènes Ig suggérant qu’AID n’est pas correctement ciblée dans ces loci. Nous avons identifié et analysé des candidats : Spt6, les cohésines et le complexe Smc5/6. Dans les cellules B activées, AID interagit avec Spt6, Spt5, l’ARN polymérase II et le complexe PAF. Par contre, les cohésines pourraient réguler la structure du locus IgH lors de la CI et la voie de réparation des cassures de l’ADN générées pendant la CI. Ces résultats contribuent à une meilleure compréhension des étapes de la CI. / During immune responses, B cell repertoire is diversified through somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR require activation-induced cytidine deaminase (AID), which induces DNA damage. While AID deficiency abrogates SHM and CSR, C-terminal truncations impair CSR without affecting SHM and it has been proposed that AID C-terminal domain associates with CSR-specific factor(s). In order to identify these factors, we studied a human CSR-specific immunodeficiency, characterized by normal SHM and AID expression. B cells from these patients do not display DSBs at switch (S) regions, suggesting that they might lack an AID-binding factor(s) required to target AID to S regions during CSR. Through a multi- approach strategy, we identified and analyzed candidate factors, including Spt6, the cohesin complex and the Smc5/6 complex. We show that, in B cells poised to undergo CSR, AID is in a complex with Spt6, Spt5, the RNA polymerase II and the PAF complex while cohesins might regulate the 3D structure of the IgH locus and the pathway of DSBs repair at the Ig S regions. Our work thus contributes to a better understanding of the CSR reaction.
|
2 |
The Mismatch Repair Pathway Functions Normally at a non-AID Target in Germinal Center B cellsGreen, Blerta 07 December 2011 (has links)
Deficiency in Msh2, a component of the mismatch repair (MMR) system, leads to a ~10-fold increase in the mutation frequency in most tissues. By contrast, Msh2-deficiency in germinal center (GC) B cells decreases the mutation frequency at the IgH V-region, as a dU:dG mismatch produced by AID initiates modifications by MMR resulting in mutations at nearby A:T basepairs. This raises the possibility that GC B cells express a factor that converts MMR into a globally mutagenic pathway. To test this notion, we investigated whether MMR corrects mutations in GC B cells at a gene not mutated by AID. We found that GC B cells accumulate 5-times more mutations than follicular B cells. Notably, the mutation frequency was ~10 times higher in Msh2-/- compared to wildtype GC B cells. These results show that in GC B cells MMR functions normally at an AID-insensitive gene.
|
3 |
The Mismatch Repair Pathway Functions Normally at a non-AID Target in Germinal Center B cellsGreen, Blerta 07 December 2011 (has links)
Deficiency in Msh2, a component of the mismatch repair (MMR) system, leads to a ~10-fold increase in the mutation frequency in most tissues. By contrast, Msh2-deficiency in germinal center (GC) B cells decreases the mutation frequency at the IgH V-region, as a dU:dG mismatch produced by AID initiates modifications by MMR resulting in mutations at nearby A:T basepairs. This raises the possibility that GC B cells express a factor that converts MMR into a globally mutagenic pathway. To test this notion, we investigated whether MMR corrects mutations in GC B cells at a gene not mutated by AID. We found that GC B cells accumulate 5-times more mutations than follicular B cells. Notably, the mutation frequency was ~10 times higher in Msh2-/- compared to wildtype GC B cells. These results show that in GC B cells MMR functions normally at an AID-insensitive gene.
|
4 |
Investigations into the Targeting and Substrate Specificity of Activation-induced DeaminaseParsa, Jahan-Yar 18 December 2012 (has links)
The processes of secondary antibody diversification are initiated by the mutagenic, B cell specific enzyme, Activation-Induced Deaminase (AID). AID deaminates deoxycytosine (dC) that is located in single-stranded DNA (ssDNA) in actively transcribed DNA to initiate the processes of somatic hypermutation (SHM), gene conversion (GCV) and class switch recombination (CSR) at the antibody gene loci. These processes lead to high affinity antibodies and antibodies of various effector functions that are required to efficiently neutralize invading pathogens. It is currently unclear how the antibody genes are specifically targeted by AID over other genes. I found that AID is able to mutate a non-immunoglobulin (Ig) transgene independent of its chromosomal integration site at rates that were above background mutation rates, but were ~10-fold lower than at the antibody variable (V) region. This result suggests that AID can mutate non-Ig genes at low rates, which may explain AID’s role in oncogenesis, but nevertheless shows that AID preferentially mutates the Ig locus over other loci.
While it is understood that AID specifically deaminates dC bases in ssDNA, the size, distribution and origin of these ssDNA substrates is unknown. By utilizing a unique in situ sodium bisulfite assay to detect regions of ssDNA in intact nuclei, I characterized ssDNA regions and found that they are accurate predictors of AID activity during the processes of SHM and CSR in mammalian B cells and E.coli. Importantly, with the use of E.coli models, I show that these ssDNA substrates are the product of transcription-induced negative-supercoiled DNA that correlates strongly with the mutagenic activity of AID. While several underlying mechanisms exist to prevent the mistargeting of AID, my findings suggest that by simply gaining access to ssDNA that is produced by transcription-induced negative supercoiling, AID has the potential to mutate non-Ig genes, albeit at lower rates than the antibody V-region.
|
5 |
Investigations into the Targeting and Substrate Specificity of Activation-induced DeaminaseParsa, Jahan-Yar 18 December 2012 (has links)
The processes of secondary antibody diversification are initiated by the mutagenic, B cell specific enzyme, Activation-Induced Deaminase (AID). AID deaminates deoxycytosine (dC) that is located in single-stranded DNA (ssDNA) in actively transcribed DNA to initiate the processes of somatic hypermutation (SHM), gene conversion (GCV) and class switch recombination (CSR) at the antibody gene loci. These processes lead to high affinity antibodies and antibodies of various effector functions that are required to efficiently neutralize invading pathogens. It is currently unclear how the antibody genes are specifically targeted by AID over other genes. I found that AID is able to mutate a non-immunoglobulin (Ig) transgene independent of its chromosomal integration site at rates that were above background mutation rates, but were ~10-fold lower than at the antibody variable (V) region. This result suggests that AID can mutate non-Ig genes at low rates, which may explain AID’s role in oncogenesis, but nevertheless shows that AID preferentially mutates the Ig locus over other loci.
While it is understood that AID specifically deaminates dC bases in ssDNA, the size, distribution and origin of these ssDNA substrates is unknown. By utilizing a unique in situ sodium bisulfite assay to detect regions of ssDNA in intact nuclei, I characterized ssDNA regions and found that they are accurate predictors of AID activity during the processes of SHM and CSR in mammalian B cells and E.coli. Importantly, with the use of E.coli models, I show that these ssDNA substrates are the product of transcription-induced negative-supercoiled DNA that correlates strongly with the mutagenic activity of AID. While several underlying mechanisms exist to prevent the mistargeting of AID, my findings suggest that by simply gaining access to ssDNA that is produced by transcription-induced negative supercoiling, AID has the potential to mutate non-Ig genes, albeit at lower rates than the antibody V-region.
|
6 |
RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase / hnRNP KのRNA結合モチーフはAIDによる抗体多様性に必須であるYin, Ziwei 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第22698号 / 医科博第113号 / 新制||医科||8(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 竹内 理, 教授 椛島 健治, 教授 河本 宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
7 |
Accumulation of Somatic Mutations in TP53 in Gastric Epithelium with Helicobacter pylori infection. / Helicobacter pylori感染に伴う慢性胃炎粘膜におけるTP53遺伝子変異の蓄積Shimizu, Takahiro 24 September 2014 (has links)
This dissertation is author version of following the journal article. Takahiro Shimizu, Hiroyuki Marusawa, Yuko Matsumoto, Tadashi Inuzuka, Atsuyuki Ikeda, Yosuke Fujii, Sachiko Minamiguchi, Shin’ichi Miyamoto, Tadayuki Kou, Yoshiharu Sakai, Jean E. Crabtree, Tsutomu Chiba, Accumulation of Somatic Mutations in TP53 in Gastric Epithelium With Helicobacter pylori Infection, Gastroenterology, Volume 147, Issue 2, August 2014, Pages 407-417.e3, ISSN 0016-5085, http://dx.doi.org/10.1053/j.gastro.2014.04.036. / 京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18543号 / 医博第3936号 / 新制||医||1006(附属図書館) / 31443 / 京都大学大学院医学研究科医学専攻 / (主査)教授 羽賀 博典, 教授 小川 誠司, 教授 武藤 学 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
8 |
Identification of DNA cleavage- and recombination-specific hnRNP co-factors for activation-induced cytidine deaminase / RNA結合タンパク質hnRNP KとhnRNP LがAIDによるDNA切断と遺伝子組換えに必須の共役因子であるHu, Wenjun 23 July 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19228号 / 医博第4027号 / 新制||医||1011(附属図書館) / 32227 / 京都大学大学院医学研究科医学専攻 / (主査)教授 武田 俊一, 教授 竹内 理, 教授 髙田 穣 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
9 |
Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations / Activation-induced cytidine deaminaseは腫瘍関連遺伝子に変異を誘導することにより膵腫瘍形成に寄与するSawai, Yugo 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第19567号 / 医博第4074号 / 新制||医||1013(附属図書館) / 32603 / 京都大学大学院医学研究科医学専攻 / (主査)教授 武田 俊一, 教授 小川 誠司, 教授 野田 亮 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
10 |
Necessity of HuR/ELAVL1 for activation-induced cytidine deaminase-dependent decrease in topoisomerase 1 in antibody diversification / 抗体多様化においてHuR/ELAVL1はactivation-induced cytidine deaminase依存性のtopoisomerase1の減少に必要であるAMIN, WAJID 24 July 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24833号 / 医博第5001号 / 新制||医||1067(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 生田, 宏一, 教授 上野, 英樹, 教授 濵﨑, 洋子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
Page generated in 0.1142 seconds