• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing an Experimental Protocol for Separating Active Diameter Response from Passive Response in Small Blood Vessels / Utveckling av ett experiment som separerar den aktiva och passiva diameter responsen hos små blodkärl

Peterson, Amanda January 2017 (has links)
The knowledge of blood vessel biomechanics is used for understanding and developing treatments for cardiovascular disease. The objective of this project was to develop an experimental protocol, for education and research, that separates active diameter response from the passive, as a function of the intraluminal pressure in a pressure myograph. The design process was performed in three steps. First the protocol was designed for an artificial vessel and then expanded to include passive properties of blood vessels, finally further developments needed to analyze active blood vessels were suggested. The system was built as a pressure myograph containing a vessel chamber where the vessel was mounted on two cannulas, two pressure sensors for calculating the intraluminal pressure, and one microscope equipped with a camera for diameter observations. Reference data for the artificial vessel material was acquired from a uniaxial tensile test. The results was in the form of stress-stretch relations. Both the results from the artificial vessel and the passive blood vessel was in a acceptable reference range. The results indicate that the experimental protocol can be used for testing passive properties of both artificial vessels and small blood vessels. No results were obtained for active blood vessels, thus the experimental protocol can not be used for separating the active response to diameter change of blood vessels. However, further developments of the experimental protocol are discussed. / Kunskap om blodkärlens biomekanik används för att förstå och utveckla behandlingsmetoder mot hjärt- och kärlsjukdomar. Syftet med det här projektet var att utveckla ett experiment som mäter små blodkärls diameter och vätsketryck in vitro. Experimentet skulle sedan separera det aktiva muskelbidraget till diameterförändring från det passiva bidraget. Genom att göra detta kan kunskapen om biomekaniken hos blodkärl utvecklas inom såväl forskning som utbildning. Experimentet utvecklades i tre steg. Först utvecklades det för artificiella blodkärl och anpassades sedan för passiva blodkärl. Slutligen diskuteras vidareutvecklingar av experimentet gällande de aktiva egenskaperna för blodkärl. Experimentet utformades genom att ett kärl placerades i en kammare. Blodkärlet fästes i vardera ände på varsin kanyl som var kopplade till trycksensorer. För att registrera diametern placerades kammaren under ett kameramikroskop. Resultatet består av spänning-sträcknings diagram. Både resultatet för det artificiella blodkärlet och det passiva blodkärlet var inom ett godkänt referensintervall. Dessa resultat stödjer antagandet att experimentet kan användas för att studera passiva egenskaper av artificiella och verkliga blodkärl med storlek mellan 1.9-4.4 mm i ytterdiameter. Ingen mätdata från aktiva blodkärl kunde samlas in, utan utvecklingskrav på systemet för hantering av aktiva blodkärl har föreslagits.
2

Instructing item‑specific switch probability: expectations modulate stimulus–action priming

Jargow, Janine, Wolfensteller, Uta, Pfeuffer, Christina U., Ruge, Hannes 02 February 2024 (has links)
Both active response execution and passive listening to verbal codes (a form of instruction) in single prime trials lead tovitem-specific repetition priming effects when stimuli re-occur in single probe trials. This holds for task-specific classification (stimulus–classification, SC priming, e.g., apple–small) and action (stimulus–action, SA priming, e.g., apple–right key press). To address the influence of expectation on item-specific SC and SA associations, we tested if item-specific SC and SA priming effects were modulated by the instructed probability of re-encountering individual SC or SA mappings (25% vs. 75% instructed switch probability). Importantly, the experienced item-specific switch probability was always 50%. In Experiment 1 (N = 78), item-specific SA/SC switch expectations affected SA, but not SC priming effects exclusively following active response execution. Experiment 2 (N = 40) was designed to emphasize SA priming by only including item-specific SC repetitions. This yielded stronger SA priming for 25% vs. 75% expected switch probability, both following response execution as in Experiment 1 and also following verbally coded SA associations. Together, these results suggest that SA priming effects, that is, the encoding and retrieval of SA associations, is modulated by item-specific switch expectation. Importantly, this expectation effect cannot be explained by item-specific associative learning mechanisms, as stimuli were primed and probed only once and participants experienced item-specific repetitions/switches equally often across stimuli independent of instructed switch probabilities. This corroborates and extends previous results by showing that SA priming effects are modulated by expectation not only based on experienced item-specific switch probabilities, but also on mere instruction.
3

Mortar finite element method for cell response to applied electric field

Pérez, Cesar Augusto Conopoima 25 October 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-11T16:41:11Z No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-22T16:42:49Z (GMT) No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) / Made available in DSpace on 2018-01-22T16:42:49Z (GMT). No. of bitstreams: 1 cesaraugustoconopoimaperez.pdf: 4395089 bytes, checksum: 9e33b57e376886bbc7ff8300d693cf87 (MD5) Previous issue date: 2017-10-25 / A resposta passiva e ativa de uma célula biológica a um campo elétrico é estudada aplicando um Método de Elementos Finitos Mortar MEFM. A resposta de uma célula é um processo com duas escalas temporais, o primeiro na escala de microsegundos para a polarização da célula e o segundo na escala de milisegundos para a resposta ativa devido a dinâmica complexa das correntes nos canais iônicos da membrana celular. O modelo matemático para descrever a dinâmica da resposta celular é baseado na lei de conservação de corrente elétrica em um meio condutor. Introduzindo uma variável adicional conhecida como multiplicador de Lagrange definido na interface da célula, o problema de valor de fronteira associado a conservação de corrente elétrica é desacoplado do problema de valor inicial associado a responta passiva e ativa da célula. O método proposto permite resolver o problema da distribuição de potencial elétrico em um arranjo geométrico arbitrário de células. Com o objetivo de validar a metodologia apresentada, a convergência espacial do método é numericamente investigada e a solução aproxima e exata que descreve a polarização de uma célula, são comparadas. Finalmente, para demonstrar a efetividade do método, a resposta ativa a um campo elétrico aplicado num arranjo de células de geometria arbitraria é investigada. / The response of passive and active biological cell to applied electric field is investigated with a Mortar Finite Element Method MFEM. Cells response is a process with two different time scales, one in microseconds for the cell polarization and the other in milliseconds for the active response of the cell due to the complex dynamics of the ion-channel current on the cell membrane. The mathematical model to describe the dynamics of the cell response is based on the conservation law of electric current in a conductive medium. By introducing an additional variable known as Lagrange multiplier defined on the cell interface, the boundary value problem associated to the conservation of electric current is decoupled from the initial value problem associated to the passive and active response of the cell. The proposed method allows to solve electric potential distribution in arbitrary cell geometry and arrangements. In order to validate the presented methodology, the h-convergence order of the MFEM is numerically investigated. The numerical and exact solutions describing cell polarization are also compared. Finally, to demonstrate the effectiveness of the method, the active response to an applied electric field in cells clusters and cells with arbitrary geometry are investigated.

Page generated in 0.0596 seconds