101 |
Designing Bio-Ink for Extrusion Based Bio-Printing ProcessHabib, MD Ahasan January 2019 (has links)
Tissue regeneration using in-vitro scaffold becomes a vital mean to mimic the in-vivo counterpart due to the insufficiency of animal models to predict the applicability of drug and other physiological behavior. Three-dimensional (3D) bio-printing is an emerging technology to reproduce living tissue through controlled allocation of biomaterial and cell. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material in bio-printing process. However, repeatable scaffold structure with good printability and shape fidelity is a challenge with hydrogel material due to weak bonding in polymer chain. Additionally, there are intrinsic limitations for bio-printing of hydrogels due to limited cell proliferation and colonization while cells are immobilized within hydrogels and don’t spread, stretch and migrate to generate new tissue. The goal of this research is to develop a bio-ink suitable for extrusion-based bio-printing process to construct 3D scaffold. In this research, a novel hybrid hydrogel, is designed and systematic quantitative characterization are conducted to validate its printability, shape fidelity and cell viability. The outcomes are measured and quantified which demonstrate the favorable printability and shape fidelity of our proposed material. The research focuses on factors associated with pre-printing, printing and post-printing behavior of bio-ink and their biology. With the proposed hybrid hydrogel, 2 cm tall acellular 3D scaffold is fabricated with proper shape fidelity. Cell viability of the proposed material are tested with multiple cell lines i.e. BxPC3, prostate stem cancer cell, HEK 293, and Porc1 cell and about 90% viability after 15-day incubation have been achieved. The designed hybrid hydrogel demonstrate excellent behavior as bio-ink for bio-printing process which can reproduce scaffold with proper printability, shape fidelity and higher cell survivability. Additionally, the outlined characterization techniques proposed here open-up a novel avenue for quantifiable bio-ink assessment framework in lieu of their qualitative evaluation.
|
102 |
The viability of poly (chlorotrifluoroethylene-co-vinylidene fluoride) as an oxidiser in extrudable pyrotechnic compositionsCowgill, Andrew William January 2017 (has links)
In a push towards more environmentally friendly pyrotechnics, new greener pyrotechnic compositions need to be developed. A primary goal is to replace components such as lead, barium, and chromium in pyrotechnic compositions. Fused Deposition Modelling (FDM) is a 3D printing/additive manufacturing method whereby a thin filament is passed through a heated nozzle, and extruded onto a substrate in successive layers. This method of manufacturing could be used to produce pyrotechnic time delays based on suitable “green” polymer/fuel mixtures. Fluoropolymers are an attractive oxidising system for pyrotechnic use as fluorine is highly reactive and reacts relatively easily with common metallic fuels such as aluminium and magnesium to release a large amount of energy. Fluoropolymers are already in use as oxidisers and binders, especially in infrared decoy flares. PTFE has found wide use in the pyrotechnics industry, but is not melt-processible. A similar fluoropolymer, poly(chloro-trifluoroethylene) (PCTFE) was considered instead. PCTFE differs from PTFE in that one of the fluorine atoms in the TFE monomer has been replaced by a chlorine atom. The larger chlorine atom interferes with the packing of the polymer chains during polymerisation and, as such, may make it easier to process than PTFE. It was found that pure PCTFE degraded heavily during processing and was therefore precluded from any further study. Melt-processible copolymers containing PCTFE are available from industry. These copolymers contain vinylidene fluoride (VDF) in addition to the CTFE i.e. poly(CTFE-co-VDF). Two grades of copolymer were obtained from 3M: FK-800® resin and Dyneon® 31508 resin. These two polymers contain different ratios of CTFE to VDF. FK-800® resin was successfully extruded and showed minimal signs of degradation. Pyrotechnic films, containing aluminium powder as the fuel, were cast with both polymers using solvent techniques. Differential thermal analysis (DTA) was used to determine the ignition points of the compositions. All of the FK-800®-based compositions ignited at approximately 450 °C whilst all the Dyneon® 31508-based compositions ignited at approximately 400 °C. The energy output of the compositions was determined using bomb calorimetry. The experimental energy outputs of the FK-800®-based compositions correlated well with the predictions from the thermodynamic simulations. The maximum energy output, ~7.0 MJ∙kg1, occurred at a fuel loading between 30 – 35 wt.%. Except for one composition, the Dyneon® 31508-based compositions did not ignite in the bomb calorimeter. FK-800® was successfully extruded into a filament and showed minimal signs of degradation. In order to assess the impact of adding a solid filler on the mechanical properties and extrudability of the polymer, magnesium hydroxide was used as inactive model compound in place of aluminium. A filament of FK-800® and Mg(OH)2 was successfully compounded and produced using a filler loading of 30 wt.%. Compounding of the Dyneon 31508® with the magnesium hydroxide was unsuccessful. Addition of LFC-1® liquid fluoroelastomer improved the processibility of the Dyneon 31508® by lowering the melt viscosity. / Dissertation (MEng)--University of Pretoria, 2017. / Chemical Engineering / MEng / Unrestricted
|
103 |
Fluoropolymer-based 3D printable pyrotechnic compositionsGrobler, Johannes Marthinus January 2017 (has links)
The work herein covers the complete process for development, production and testing of a melt processable pyrotechnic composition, with the goal of using the composition as a printing material in a fused deposition modelling (FDM) type 3D printer. 3D printing is fast becoming an area of interest for energetic materials research. This is due to the role that geometry can play in combustion performance of a composition and 3D printing’s ability to produce a variety of complex designs.
Melt processable fluoropolymers were selected as oxidisers. The polymers selected for the study were FK-800® and Dyneon 31508®. Both are co-polymers of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE). Aluminium was the choice fuel in this instance as it had better energetic performance than the alternatives investigated. It was also deemed to be a safer fuel when considering the combustion products. Hazardous combustion products like hydrofluoric and hydrochloric acid could be suppressed by increasing the fuel loading to 30 wt.%, thereby reducing the risks associated with burning the composition.
Preliminary differential thermal analysis (DTA) analysis indicated that the compositions would only ignite above 400 °C which was well above the suggested processing temperature of 230 °C as determined from thermogravimetric (TGA) analysis. These thermal analysis techniques indicated that the reactions were most likely a gas-solid reactions due to ignition temperatures being significantly lower than those associated with phase changes occurring in the fuels tested, yet above the decomposition temperatures for the oxidisers.
ii
Extrusion of the compositions proceeded with addition of LFC-1® liquid fluoroelastomer. This addition was made in order to order to lower the melt viscosity, thereby improving the quality of the filament produced. Compositions were extruded with an aluminium loading of 30 wt.%. Oxidiser and LFC-1® made up the rest of the mass with the LFC-1® contributions being either 7 wt.% or 14 wt.%.
Burn rates, temperatures and ignition delays were all influenced by the addition of LFC-1® to the system. FK-800® was found to be a better oxidiser in this instance since its burn rates were consistent especially when compared to erratic nature of the Dyneon 31508® burns. Linear burn rates for the FK-800® increased from 15.9 mm·s−1 to 18.9 mm·s−1 with the increase in LFC-1® loading. Combustion temperature also increased by approximately 180 °C from 794 °C.
Printing with the material was achieved only after significant alterations were made to the hot end used. Printing proceeded in a staged, start-stop manner. After each new layer of material was deposited the printer was cleared of material and the hot end was allowed to cool. If this procedure was not followed it led to significant preheating of the material within the feeding section of the extruder. This premature heating caused feeding problems due to softening and swelling of the material within the cold side of the hot end which led to blockages, leading to the conclusion that the composition was not compatible with the off-the-shelf hot end used in this study. Low quality printing could be achieved with both FK-800® and Dyneon 31508® compositions. This would suggest that slight compositional changes paired with the alterations made to the hot end could improve the quality of the prints to an extent that would be comparable to that of more commonplace printing materials. / Dissertation (MEng)--University of Pretoria, 2017. / Chemical Engineering / MEng / Unrestricted
|
104 |
Predicting Process and Material Design Impact on and Irreversible Thermal Strain in Material Extrusion Additive ManufacturingD'Amico, Tone Pappas 27 June 2019 (has links)
Increased interest in and use of additive manufacturing has made it an important component of advanced manufacturing in the last decade. Material Extrusion Additive Manufacturing (MatEx) has seen a shift from a rapid prototyping method harnessed only in parts of industry due to machine costs, to something widely available and employed at the consumer level, for hobbyists and craftspeople, and industrial level, because falling machine costs have simplified investment decisions. At the same time MatEx systems have been scaled up in size from desktop scale Fused Filament Fabrication (FFF) systems to room scale Big Area Additive Manufacturing (BAAM). Today MatEx is still used for rapid prototyping, but it has also found application in molds for fiber layup processes up to the scale of wind turbine blades. Despite this expansion in interest and use, MatEx continues to be held back by poor part performance, relative to more traditional methods such as injection molding, and lack of reliability and user expertise. In this dissertation, a previously unreported phenomenon, irreversible thermal strain (ITε), is described and explored. Understanding ITε improves our understanding of MatEx and allows for tighter dimensional control of parts over time (each of which speaks to extant challenges in MatEx adoption). It was found that ITε occurs in multiple materials: ABS, an amorphous polymer, and PLA, a semi-crystalline one, suggesting a number of polymers may exhibit it. Control over ITε was achieved by tying its magnitude back to part layer thickness and its directionality to the direction of roads within parts. This was explained in a detail by a micromechanical model for MatEx described in this document. The model also allows for better description of stress-strain response in MatEx parts broadly. Expanding MatEx into new areas, one-way shape memory in a commodity thermoplastic, ABS, was shown. Thermal history of polymers heavily influences their performance and MatEx thermal histories are difficult to measure experimentally. To this end, a finite element model of heat transfer in the part during a MatEx build was developed and validated against experimental data for a simple geometry. The application of the model to more complex geometries was also shown. Print speed was predicted to have little impact on bonds within parts, consistent with work in the literature. Thermal diffusivity was also predicted to have a small impact, though larger than print speed. Comparisons of FFF and BAAM demonstrated that, while the processes are similar, the size scale difference changes how they respond to process parameter and material property changes, such as print speed or thermal diffusivity, with FFF having a larger response to thermal diffusivity and a smaller response to print speed. From this experimental and simulation work, understanding of MatEx has been improved. New applications have been shown and rational design of both MatEx processes and materials for MatEx has been enabled.
|
105 |
The Impact of Inkjet Parameters and Environmental Conditions in Binder Jetting Additive ManufacturingColton, Trenton Miles 13 December 2021 (has links)
Binder jetting is an additive manufacturing process in which a part is fabricated layer-by-layer using inkjet technology to selectively dispense binder into powder layers in a designated area. The approach gives this process significant advantages over other additive manufacturing processes such as lower cost, capability to print in a wide range of materials, and little to no heat applied. Although binder jetting has many advantages and has been successful implemented in various industries its overall rate of adoption is slow compared to other processes. This is largely due to poor mechanical properties and consistency in printing which stems from a poor understanding of the interaction between the binder droplets and the powder bed. This is evident as print parameters for new machines and new materials are primarily determined by trial and error. The purpose of this thesis is to report the impact of various inkjet print parameters and humidity on the printing process in binder jetting. The binder/powder interaction is complex and highly dynamic where picoliter-sized droplets impact the powder bed at velocities of 1-10 m/s. Current methods of predicting this interaction assume that it is based only on binder and powder properties. This work studies the impact of inkjet printing parameters that are often overlooked with these assumptions. The impact of droplet velocity, droplet spacing, and droplet inter-arrival time was evaluated based on single line formation and effective saturation levels when printed into various powder material and sizes. Higher droplet velocities were found to decrease effective saturation with larger droplets (92-212 pl). However, droplet velocity had a negligible impact on saturation when printing with smaller droplets from 30 m orifice (29-65 pl). Line formation was dependent on both droplet inter-arrival time and droplet spacing. Max droplet spacing correlated to the square root of inter-arrival time. These results can guide selection of printing parameters that maximize build rates and reduce defects in printed parts. As the binder/powder interaction is difficult to observe and often line formation has been used as a method of observation. However, no report relating line formation to full layer parts exists. Optimal parameters determined in line printing are used for full feature parts. In addition, the impact of ambient humidity on the printing process is studied. The direct use of parameters optimized for line printing in printing a part was shown to be ineffective. When droplet spacing, line spacing, and layer thicknesses are comparable, single and multiple layers can be formed. Over short exposure periods of powder to ambient humidity produces negligible difference however, extended exposure periods significantly reduce the saturation and increase part size. Surface roughness is identified as a possible source of printing defects. Surface roughness increases significantly when printing the first layer but decreases with successive layers. This demonstrates a strong interaction between layers. The surface roughness and effective saturation was insensitive to line and droplet spacing below 60 m. Steam powder conditioning reduces sensitivity of both surface roughness and saturation to printing parameters but causes bleeding beyond the part boundaries. Further research should include improved methods of predicting ideal printing parameters and connecting it based on geometry and parts size. Further research is needed to confirm impact of surface roughness on defects in binder jetting parts. Development of methods to control spread of binder in premoistened powder to take advantage of its potential.
|
106 |
Numerical modelling and metallurgical characterization of Cr-Mo steels processed by directed energy depositionCooke, Shaun 09 July 2021 (has links)
Additive manufacturing (AM) provides unique opportunities to push the boundaries of material properties and free form fabrication. However with this novel manufacturing technique a number of defects not commonly found in conventional processes such as machining or casting can arise. Both experimental and numerical studies can help better understand the printed material on a more fundamental level in order to optimize the process and mitigate these defects. Electron microscopy can provide essential information about the as-built microstructure and characteristic defects while numerical modelling can help determine a correlation between process parameters and the resulting properties. First, an initial investigation of directed energy deposition (DED) processed 4140 steel was conducted using various microscopy methods to better understand the defects and microstructure of the printed alloy. A martensite dominate microstructure within a bainitic matrix with increasing degrees of tempering further down the build was revealed. Additional sample preparation was conducted with a focused ion beam and analyzed with the transmission electron microscope to investigate features such as grain boundaries, mechanical twins and interplanar spacing. This interplanar spacing was measured for a number of different diffraction images and compared with the theoretical values. The deviation between the measured and theoretical values can be attributed to defects such as residual stress which causes lattice strain and consequently a smaller or larger spacing between atomic planes. Lastly, diffraction images were characterized and compared with the literature to determine the Miller indices and the specific zone axis orientations. A thermo-mechanical-metallurgical finite element model for 42CrMo4 steel was then developed in ABAQUS to identify the correlation between processing parameters and resulting properties by predicting the temperature history, and resulting residual stresses and metallurgical phase fractions for the DED process. A pre-processing framework was implemented in order to allow the modelling of complex geometries and laser trajectories while experiments were conducted to validate the fidelity of the model. Four separate cases were fabricated with varying processing parameters and geometries. In addition to in-situ temperature measurements, post-build residual stress and substrate distortion data was also collected. Furthermore, metallurgical analysis was performed for each case and compared with the simulated phase fractions. The accuracy of the distortion profile increased with increasing dwell time while the accuracy in predicting the metallurgical phase fractions and residual stresses demonstrated the opposite trend. / Graduate / 2022-07-05
|
107 |
Assessment of Ti-6Al-4V Laser Clad RepairPaul Francis Gardner (12429849) 19 April 2022 (has links)
<p>Damaged components and a lack of spare components are issues which are currently affecting military aircraft capability. Laser Cladding is an additive manufacturing technique which shows promise in repairing damaged aviation components. However, there are considerable certification requirements for critical components which stand to gain the most benefits from laser clad repair methodologies. These requirements involve establishing crack growth rate data for the laser clad material to gain confidence in the reliability of the repair's performance on in-service aircraft. This research seeks to understand the fatigue behavior of Ti-6Al-4V that has undergone a simulated laser clad repair, with unrepaired specimens also tested to allow for comparison. </p>
|
108 |
Advancing melt electrospinning writing for fabrication of biomimetic structures / Entwicklung des Melt Electrospinning Writing zur Erzeugung biomimetischer StrukturenHochleitner, Gernot January 2018 (has links) (PDF)
In order to mimic the extracellular matrix for tissue engineering, recent research approaches often involve 3D printing or electrospinning of fibres to scaffolds as cell carrier material. Within this thesis, a micron fibre printing process, called melt electrospinning writing (MEW), combining both additive manufacturing and electrospinning, has been investigated and improved. Thus, a unique device was developed for accurate process control and manufacturing of high quality constructs. Thereby, different studies could be conducted in order to understand the electrohydrodynamic printing behaviour of different medically relevant thermoplastics as well as to characterise the influence of MEW on the resulting scaffold performance.
For reproducible scaffold printing, a commonly occurring processing instability was investigated and defined as pulsing, or in extreme cases as long beading. Here, processing analysis could be performed with the aim to overcome those instabilities and prevent the resulting manufacturing issues. Two different biocompatible polymers were utilised for this study: poly(ε-caprolactone) (PCL) as the only material available for MEW until then and poly(2-ethyl-2-oxazoline) for the first time. A hypothesis including the dependency of pulsing regarding involved mass flows regulated by the feeding pressure and the electrical field strength could be presented. Further, a guide via fibre diameter quantification was established to assess and accomplish high quality printing of scaffolds for subsequent research tasks.
By following a combined approach including small sized spinnerets, small flow rates and high field strengths, PCL fibres with submicron-sized fibre diameters (fØ = 817 ± 165 nm) were deposited to defined scaffolds. The resulting material characteristics could be investigated regarding molecular orientation and morphological aspects. Thereby, an alignment and isotropic crystallinity was observed that can be attributed to the distinct acceleration of the solidifying jet in the electrical field and by the collector uptake. Resulting submicron fibres formed accurate but mechanically sensitive structures requiring further preparation for a suitable use in cell biology. To overcome this handling issue, a coating procedure, by using hydrophilic and cross-linkable star-shaped molecules for preparing fibre adhesive but cell repellent collector surfaces, was used.
Printing PCL fibre patterns below the critical translation speed (CTS) revealed the opportunity to manufacture sinusoidal shaped fibres analogously to those observed using purely viscous fluids falling on a moving belt. No significant influence of the high voltage field during MEW processing could be observed on the buckling phenomenon. A study on the sinusoidal geometry revealed increasing peak-to-peak values and decreasing wavelengths as a function of decreasing collector speeds sc between CTS > sc ≥ 2/3 CTS independent of feeding pressures. Resulting scaffolds printed at 100 %, 90 %, 80 % and 70 % of CTS exhibited significantly different tensile properties, foremost regarding Young’s moduli (E = 42 ± 7 MPa to 173 ± 22 MPa at 1 – 3 % strain). As known from literature, a changed morphology and mechanical environment can impact cell performance substantially leading to a new opportunity of tailoring TE scaffolds.
Further, poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) as well as poly(ε-caprolactone-co-acryloyl carbonate) (PCLAC) copolymers could be used for MEW printing. Those exhibit the opportunity for UV-initiated radical cross-linking in a post-processing step leading to significantly increased mechanical characteristics. Here, single fibres of the polymer composed of 90 mol.% CL and 10 mol.% AC showed a considerable maximum tensile strength of σmax = 53 ± 16 MPa. Furthermore, sinusoidal meanders made of PCLAC yielded a specific tensile stress-strain characteristic mimicking the qualitative behaviour of tendons or ligaments. Cell viability by L929 murine fibroblasts and live/dead staining with human mesenchymal stem cells revealed a promising biomaterial behaviour pointing out MEW printed PCLAC scaffolds as promising choice for medical repair of load-bearing soft tissue.
Indeed, one apparent drawback, the small throughput similar to other AM methods, may still prevent MEW’s industrial application yet. However, ongoing research focusses on enlargement of manufacturing speed with the clear perspective of relevant improvement. Thereby, the utilisation of large spinneret sizes may enable printing of high volume rates, while downsizing the resulting fibre diameter via electrical field and mechanical stretching by the collector uptake. Using this approach, limitations of FDM by small nozzle sizes could be overcome. Thinking visionary, such printing devices could be placed in hospitals for patient-specific printing-on-demand therapies one day. Taking the evolved high deposition precision combined with the unique small fibre diameter sizes into account, technical processing of high performance membranes, filters or functional surface finishes also stands to reason. / Um biomimetische extrazelluläre Matrices für das Tissue Engineering herzustellen, bedienen sich aktuelle Forschungsansätze oftmals der Produktion von Faser-Konstrukten durch additive Fertigung oder Elektrospinn-Verfahren. Das sogenannte Melt Electrospinning Writing (MEW) kombiniert Vorteile beider Techniken und weist dadurch ein hohes Applikationspotential auf. Daher bestand das Ziel der vorliegenden Arbeit in der Weiterentwicklung und Erforschung des MEW. Für diesen Zweck wurde eine neuartige Forschungsanlage konzipiert und gebaut, welche mit einzigartiger Verfahrenspräzision und Prozesskontrolle die Fertigung von hochqualitativen Konstrukten ermöglichte. Auf Basis dessen konnten die durchgeführten Studien das Verständnis des elektrohydrodynamischen Druckvorgangs und der untersuchten Prozessparameter vertiefen und letztendlich zur Ausweitung des Verfahrens auf neue medizinisch relevante Thermoplaste beitragen.
Um eine reproduzierbare Herstellung von Scaffolds zu ermöglichen, wurde eine häufig auftretende Prozessinstabilität erforscht und als pulsing, oder in stark ausgeprägten Fällen als long beading, klassifiziert. Durch Prozessanalyse konnte zudem eine Methode zur Vermeidung dieser Instabilität entwickelt werden. Dafür wurden zwei unterschiedliche biokompatible Polymere verwendet: Poly(ε-Caprolacton) (PCL) als bis dahin einziger verfügbarer MEW Werkstoff, sowie erstmalig Poly(2-Ethyl-2-Oxazolin). Die aufgestellte Hypothese umfasst eine universelle Abhängigkeit der pulsing Instabilität zu involvierten Massenströmen, welche durch Anpassung des angelegten Prozessdruckes und der elektrischen Feldstärke reguliert werden kann. Um ein optimales Prozessergebnis für nachfolgende Forschungsarbeiten zu erzielen, wurde zusätzlich ein Leitfaden zur quantitativen Bewertung des Grades der Instabilität bereitgestellt.
Durch Kombination kleiner Spinndüsen, kleiner Schmelze-Flussraten und hoher elektrischen Feldstärken, konnten erstmalig PCL Fasern mit sub-mikron Durchmessern (fØ = 817 ± 165 nm) zu präzisen Scaffolds verarbeitet werden. Diese wurden anschließend durch materialwissenschaftliche Analytik charakterisiert. Dabei wurde eine molekulare Vorzugsorientierung und isotrope Kristallausrichtung entlang der Faser beobachtet, welche durch den hohen Verstreckungsgrad des erstarrenden Polymerstrahls erklärt werden konnte. Resultierende sub-mikron Fasern konnten zwar für einen akkuraten Druckvorgang verwendet werden, jedoch erwiesen sich die Strukturen als instabil und daher nicht geeignet für die Handhabung bei Zellkulturstudien. Aus diesem Grund wurde ein Beschichtungsansatz mittels hydrophilen und vernetzbaren Sternmolekülen für Substratflächen herangezogen. Während solche modifizierten Oberflächen bekanntermaßen Zelladhäsion verhindern, konnten gedruckte sub-mikron Scaffolds auf der Oberfläche haften und so für biologische Studien verwendet werden.
Durch das gezielte Ablegen von Fasern unterhalb der kritischen Translationsgeschwindigkeit (CTS) des Kollektors, konnten sinusförmige Faserstrukturen erzeugt werden. Analog zu rein viskosen Fluiden, welche durch ein bewegliches Band aufgesammelt werden, schien dieser Vorgang dem sogenannten buckling zu unterliegen und daher phänomenologisch nicht oder nur geringfügig vom elektrischen Feld abhängig zu sein. Zudem konnte eine durchgeführte Studie die direkte Abhängigkeit der Fasergeometrie mit der Kollektorbewegung belegen. Unabhängig vom Prozessdruck, führte eine verminderte Kollektorgeschwindigkeit sc in den Grenzen CTS > sc ≥ 2/3 CTS zu erhöhten Amplituden bzw. Spitze-zu-Spitze Werten und verkürzten Wellenlängen. Durch das kontrollierte Ablegen der Fasern bei Geschwindigkeiten von 100 %, 90 % 80 % und 70 % CTS konnten zudem Scaffolds mit unterschiedlichen mechanischen Eigenschaften hergestellt werden. Speziell der Zugmodul wurde dadurch etwa um eine halbe Größenordnung moduliert (Es = 42 ± 7 MPa bis 173 ± 22 MPa bei 1 – 3 % Dehnung). Dies ist in Kombination mit der Strukturierung für maßgeschneiderte TE Scaffolds von großem Interesse, da zelluläre Systeme sensibel auf ihre Umgebung reagieren können.
Des Weiteren wurden Poly(L-Lactid-co-ε-Caprolacton-co-Acryloylcarbonat) und Poly(ε-Caprolacton-co-Acryloylcarbonat) (PCLAC) Copolymere hinsichtlich deren MEW Verarbeitbarkeit untersucht. Solche Kunststoffe können nach dem Druckvorgang mit UV-Strahlung radikalisch vernetzt werden und dadurch deutlich erhöhte mechanische Eigenschaften ausbilden. Für Fasern aus 90 mol.% CL und 10 mol.% AC wurden beispielsweise maximale Zugfestigkeiten von σmax = 53 ± 16 MPa ermittelt. MEW gedruckte sinusförmige Faserstrukturen aus PCLAC wiesen darüber hinaus ein biomimetisches Spannungs-Dehnung-Verhalten auf, vergleichbar zu Sehnen- und Ligamentgewebe. Eine Untersuchung der Zellviabilität von L929 murinen Fibroblasten im Eluattest, sowie eine lebend/tot-Färbung von humanen mesenchymalen Stammzellen auf den Scaffolds, ergab vielversprechende Resultate und damit ein relevantes Anwendungspotential solcher Strukturen als Implantat.
Neben genannten Vorteilen, weist MEW als Verfahren bislang allerdings geringe Produktionsgeschwindigkeiten auf. Diese sind daher in den Fokus aktueller Forschungsvorhaben gerückt. Einen Ansatz hierfür bieten Spinndüsen mit hohem Innendurchmesser und erhöhter Austragsrate, wobei die optimierte elektrische Feldstärke, sowie ein Verstrecken durch die Kollektorbewegung, zu den erwünschten dünnen Fasern führen können. Dadurch kann die abwärtslimitierte Düsengröße des FDM Verfahrens überwunden werden. Visionär gedacht, könnte eine solche Anlage direkt in Krankenhäusern zur Fertigung von patienten- und defektspezifischen Implantaten eingesetzt werden. Darüber hinaus ermöglicht die hohe Präzision, zusammen mit dem Drucken von Mikro-Fasern, einen technischen Einsatz zur Herstellung von Membranen, Filtern oder funktionalen Oberflächenbeschichtungen.
|
109 |
Coating processes towards selective laser sintering of energetic material compositesJiba, Zetu January 2019 (has links)
This research aims to contribute to the safe methodology for additive manufacturing (AM) of
energetic materials. Coating formulation processes were investigated to find a suitable method
that may enable selective laser sintering (SLS) as the safe method for fabrication of high
explosive (HE) compositions. For safety and convenience reasons, the concept demonstration
was conducted using inert explosive simulants with properties quasi-similar to the real HE.
Coating processes for simulant RDX-based microparticles by means of PCL and 3,4,5-
trimethoxybenzaldehyde (as TNT simulant) are reported. These processes were evaluated for
uniformity of coating the HE inert simulant particles with binder materials to facilitate the SLS
as the adequate binding and fabrication method. The critical constraints being the coating
effectiveness required, spherical particle morphology, micron size range (>20 μm) and a good
powder deposition and flow, and performance under SLS to make the method applicable for
HEs.
Of the coating processes investigated, suspension system and single emulsion methods gave
required particle near spherical morphology, size and uniform coating. The suspension process
appears to be suitable for the SLS of HE mocks and potential formulation methods for active
HE composites. The density was estimated to be comparable with the current HE compositions
and plastic bonded explosives (PBXs) such as C4 and PE4, produced from traditional methods. The formulation method developed and the understanding of the science behind the processes
paves the way toward safe SLS of the active HE compositions and may open avenues for further
research and development of munitions of the future. / Dissertation (MSc (Applied Science:Chemical Technology))--University of Pretoria, 2019. / Chemical Engineering / MSc (Applied Science:Chemical Technology) / Unrestricted
|
110 |
Image Analysis Methods For Additive Manufacturing Applications / Bildanalysmetoder för applikationer för tillsatsstillverkningRamakrishna Yogendra, Jayanth January 2020 (has links)
There is an upsurge of research interest on Ni-based superalloys additively manufactured (AM) in aerospace sectors. However, achieving the accuracy and quality of the AM part is a challenging task because it is a process of adding material layer by layer with different process parameters. Hence, defects can be observed, and these defects have a detrimental effect on the mechanical properties of the material. Also, AM materials commonly portray a columnar grain structure which also makes it difficult to determine the average grain size because while using the commonly used intercept method, the grain boundaries do not intercept to the test line appropriately. It is important to measure the defects and grain size before performing mechanical testing on the material. Defect measurement and grain size measurements are usually measured manually which results in longer lead time. This work is addressed towards testing recipes in the automated image analysis software to optimize the lead time with good accuracy. Haynes 282, a γ' strengthened superalloy is used in this work. It was assumed that 1,5mm of material from the surface will be machined away so defects had to be measured in this region of interest. The image analysis tools used to test its potentials are MIPAR and ImageJ. Initially, five images in MIPAR and Image J were tested keeping the manual measurements as a benchmark. From this part, it was concluded that metallography and image quality play an important role in the automated measurement. Also, basic Image J software cannot give the measurements of lack of fusion in terms of caliper diameter (longest measurable diameter). Hence, MIPAR was chosen for the application because it was more promising. In the next part, 15 samples were used with manual measurements from a stitched sample and batch processing with MIPAR. The total caliper diameter results were plotted to compare manual measurements and MIPAR. It was observed that scratches were measured as lack of fusion defects at few instances by MIPAR which were further refined using a post-processing function. The defect density results were plotted and compared as well. Due to the difference in calculation of region of interest, the difference in results was observed.To perform the grain size measurement, Haynes 282 was used in HIP and heat treated condition, achieving equiaxed grains. The etchant should be appropriate to reveal the grains. Hence four different etchants were used in this study hydrogen peroxide+HCl, Kallings (electro etch), Kallings (swab) and diluted oxalic acid. This measurement was performed on the material which was cut along the build direction as well as 90º to the growth direction. Since there is no standard for additively manufactured material yet, the results were tested with hall-petch equation to be convinced of the results obtained. It was observed that MIPAR recipe portrayed good results. The results of manual measurements and MIPAR measurements were plotted and compared. It was observed that Hydrogen peroxide and Kallings (swab) showed the grains evidently but twin boundaries were revealed as well. MIPAR calculated the twin boundaries as grains so it over calculated than manual measurements. Kallings (electro etch) and diluted oxalic acid did not reveal the grains so it was difficult for MIPAR to identify the grains.
|
Page generated in 0.0912 seconds