• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 190
  • 138
  • 27
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • Tagged with
  • 451
  • 168
  • 142
  • 109
  • 68
  • 65
  • 49
  • 47
  • 46
  • 43
  • 43
  • 42
  • 40
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Relaxation of Isolated Human Myometrial Muscle by beta2-Adrenergic Receptors but Not beta1-Adrenergic Receptors

Liu, Ying L., Nwosu, Uchenna C., Rice, P. J. 01 October 1998 (has links)
OBJECTIVE: Human myometrium contains both beta1-adrenergic and beta2-adrenergic receptors. This study was designed to assess the importance of each beta-adrenergic receptor subtype in relaxation of human myometrial muscle strips. STUDY DESIGN: Radioligand binding studies were used to establish the presence of each beta-adrenergic receptor subtype, whereas highly selective beta1-antagonists and beta2-antagonists were used to assess the contribution of beta-adrenergic receptor subtypes to myometrial relaxation after exposure to (-)-isoproterenol. RESULTS: Membranes prepared from myometrium contained 82% +/- 4% beta2-adrenergic receptors. After contraction produced by exposure to potassium chloride (35 mmol/L), isoproterenol produced relaxation with half maximal effect at 0.02 micromol/L and a maximal relaxation of 52% +/- 3%. Beta1-antagonist CGP-20712A had no significant effect, whereas beta2-antagonist ICI-118551 produced a characteristic rightward shift of the isoproterenol concentration-relaxation relationship. CONCLUSIONS: Although both beta1-adrenergic receptors and beta2-adrenergic receptors are present in human myometrial tissue at term, relaxation by nonselective beta-agonist isoproterenol is mediated exclusively by beta2-adrenergic receptors.
242

The in vivo role of AMP-activated protein kinase in the metabolic function of brown and beige adipose tissue

Desjardins, Eric January 2016 (has links)
Brown (BAT) and white (WAT) adipose tissues are significant contributors to whole-body energy homeostasis. A disturbance in their metabolic function could result in the development of obesity and subsequent metabolic complications. The energy-sensing enzyme of the cell, AMP-activated protein kinase (AMPK), has been vastly studied in skeletal muscle and liver, but its role in BAT and WAT metabolism is elusive. We generated an inducible, adipocyte-specific knockout mouse model for the two AMPK β subunits (iβ1β2AKO) and found that iβ1β2AKO mice were intolerant to cold, and resistant to β3-adrenergic activation of BAT and browning of WAT. These defects in BAT activity were not due to the AMPK-ACC axis, but instead were due to compromised integrity of mitochondria. Mitochondrial morphology, function, and autophagy were all distorted in iβ1β2AKO mice, measured via transmission electron microscopy (TEM), respiration, and immunoblotting, respectively. These findings provide strong evidence that adipocyte AMPK regulates a fine-tuned program that responds to environmental and pharmacological inputs by maintaining mitochondrial integrity through autophagy and subsequent mitochondrial biogenesis in chronic settings. / Thesis / Master of Science (MSc) / Traditionally, there are two types of adipose tissue that appear and function differently. White adipose tissue (WAT) has evolved to store away energy in an efficient manner for later use. In contrast, brown adipose tissue (BAT) is a unique organ in mammals that has evolved over time to maintain body temperature. In essence, BAT has the ability to burn away calories as heat and is a promising therapeutic target to combat obesity and metabolic diseases such as type 2 diabetes. In our study, we have identified a potential factor that not only promotes BAT activity, but also promotes WAT to function more like BAT. By targeting this factor through drugs, there is potential to increase resting metabolic rate and fight the global epidemic of obesity.
243

C-Reactive Protein (CRP) Blocks the Desensitization of Agonistic Stimulated G Protein Coupled Receptors (GPCRs) in Neonatal Rat Cardiomyocytes

Wallukat, Gerd, Mattecka, Stephan, Wenzel, Katrin, Schrödl, Wieland, Vogt, Birgit, Brunner, Patrizia, Sheriff, Ahmed, Kunze, Rudolf 02 June 2023 (has links)
Recently, C-reactive protein (CRP) was shown to affect intracellular calcium signaling and blood pressure in vitro and in vivo, respectively. The aim of the present study was to further investigate if a direct effect on G-protein coupled receptor (GPCR) signaling by CRP can be observed by using CRP in combination with different GPCR agonists on spontaneously beating cultured neonatal rat cardiomyocytes. All used agonists (isoprenaline, clenbuterol, phenylephrine, angiotensin II and endothelin 1) affected the beat rate of cardiomyocytes significantly and after washing them out and re-stimulation the cells developed a pronounced desensitization of the corresponding receptors. CRP did not affect the basal beating-rate nor the initial increase/decrease in beat-rate triggered by different agonists. However, CRP co-incubated cells did not exhibit desensitization of the respective GPCRs after the stimulation with the different agonists. This lack of desensitization was independent of the GPCR type, but it was dependent on the CRP concentration. Therefore, CRP interferes with the desensitization of GPCRs and has to be considered as a novel regulator of adrenergic, angiotensin-1 and endothelin receptors.
244

Identifying effects of adrenaline and dopamine binding on the beta2-adrenergic receptor structure and function using machine learning

Gunnarsson, Joar, Bergner, Leon January 2023 (has links)
The beta2-adrenergic receptor is a G-protein coupled receptor, involved in several physiological processes, which enables signaling through the cell membrane. To study the effect of dopamine and adrenaline binding on the receptor structure and function, we used machine learning methods applied to data from molecular dynamics simulations. We found that the three machine learning methods Random Forest, Kullback-Leibler divergence, and Principal Component Analysis generated results that correspond to previous studies. When comparing the active state of the receptor with or without a ligand bound, we found that residues around Ser203 and Asn301 of the orthosteric binding pocket and residues around Ala91 of the TM2 differed. When instead comparing the active state of the receptor with adrenaline or dopamine bound, we found that residues around Thr68 differed. Additionally, we also found that adrenaline and dopamine cause different structural changes in the intracellular parts of TM5 and TM6. These findings indicate ligand-specific effects on the receptor, providing potentially useful information for the understanding of the interaction of adrenaline and dopamine with the beta2-adrenergic receptor.
245

Alpha-1-Adrenergic receptors as new targets in Neuroblastoma

Broso, Francesca 11 October 2021 (has links)
High-risk neuroblastoma (NB) is an aggressive childhood tumor that originates from progenitor neural crest cells. Even if the therapeutic protocol for NB is articulate and aggressive, the outcome remains dismal, with the 5-year disease-free overall survival below rating 50%. A novel drug combination strategy can possibly provide a new solution to this unmet therapeutic need. 13-cis retinoic acid (13-cis-RA, isotretinoin) is an anti-proliferative and pro-differentiative agent currently used in the post-consolidation phase of NB therapy. To identify molecules able to potentiate the anti-proliferative activity of 13-cis-RA, NB cells were treated with a library of 169 naturally occurring polyphenols in combination with the retinoid. This in vitro screen led to the identification of isorhamnetin as a synergistic partner of 13-cis-RA, producing an 80% reduction in cell viability. At the molecular level, this synergistic effect is followed by a marked increase in the expression of a member of the catecholamine receptor superfamily: the adrenergic receptor alpha-1B (ADRA1B) suggesting that this receptor might represent a key mediator of the synergistic effect of 13-cis-RA and isorhamnetin observed in vitro. This finding redirected our attention to the class of adrenergic receptors (ARs) as novel targets in NB. To investigate the role of ADRA1B in the synergism, we generated CHP134 NB cell lines knocked-out (KO) for the receptor and observed that exposure of CHP134 KO cell to 13-cis-RA leads to a reduction of cell viability and neural differentiation. We, therefore, substituted the genetic KO strategy with the alpha-1B adrenergic antagonist, L765,314, obtaining the same results. Subsequently, we extended the analysis on the role of adrenergic receptors (AR) performing a biased screen using two libraries of AR-ligands. The screen results confirm that the molecules working as alpha-1-ARs antagonists are those that greatly increase cell sensitivity to 13-cis-RA with reduction of cell viability and increase in differentiation. We confirmed our observation in NB xenograft mice models in vivo, treating mice with a combination of 13-cis-RA and the FDA approved alpha-1 AR antagonist doxazosin. The proposed pharmacological treatment was effective in slowing tumor growth, leading to tumors of smaller size. From our results, we can conclude that the deletion or inhibition of alpha-1-AR sensitizes NB cells to 13-Cis-RA, both in terms of induction of apoptosis and neural differentiation. Since NB is a catecholamine-rich tumor, we propose that antagonization of alpha-1-AR disrupts the established autocrine pro-survival circuit generated by catecholamines in NB and restores the ability of the cells to follow the pro-differentiative and pro-apoptotic programs endorsed by 13-cis-RA. Considering the druggable nature of the alpha-1-AR receptors, we indicate this class of receptors as a novel pharmacological target for the treatment of neuroblastoma.
246

Role of Adrenergic Neurons in Motor Control: Examination of Cerebellar Purkinje Neurons in Mice Following Selective Adrenergic Cell Ablation in Vivo

Mansour, Monica 01 January 2016 (has links)
Phenylethanolamine-N-methyltransferase (Pnmt) is the enzyme that catalyzes the conversion of noradrenaline to adrenaline. These catecholamines are synthesized in the medulla of the adrenal gland and by some neurons of the central nervous system. The precise location of Pnmt action in the brain and its physiological significance are unknown. Prior studies led by Aaron Owji, a graduate student in Dr. Ebert’s laboratory, showed that mice with selectively ablated Pnmt cells show signs of neurological defects such as abnormal gait, weakened grip strength, lack of balance, reduced movement, and defective reflexes during tail suspension tests. The cerebellum is a small section of the brain that is responsible for fine-tuning motor commands. Since the Purkinje cells of the cerebellum act as the sole source of output from the cerebellar cortex, impairment of these cells could possibly account for the motor deficits seen in the mice models. The purpose of this project is to determine if there is indeed a change in Purkinje cells between wild type mice and Pnmt-ablated mice. The first aim is to identify quantitative differences in cell count between both genotypes. The second aim is to determine any morphological changes in the Purkinje cells. The main technique used in this project is immunohistochemistry in which cerebellum tissue from mice models are stained with Calbindin (a cellular marker for Purkinje neurons) and imaged with a confocal microscope. Results showed a slight reduction in the Purkinje cells of the ablated mice compared to the control genotype, accompanied with observable differences in cell structure. Understanding catecholamine pathway mechanisms in the nervous system is imperative for elucidating and targeting key players in neurodegenerative disorders.
247

Neural Mechanisms Underlying Stress-Induced Depression and Its Prevention

Nagabhushan, Sahana 26 May 2011 (has links)
No description available.
248

Effects of Neuronal Nitric Oxide Synthase Signaling on Myocyte Contraction during Beta-Adrenergic Stimulation

Tang, Lifei January 2013 (has links)
No description available.
249

The effects of coronary heart disease, beta-blockade medications and stage duration on graded exercise testing

Nuzzo, Tracye A. Williams (Tracye Adel Williams) 17 November 2012 (has links)
Controversy exists regarding the effects of beta-blocker medications on functional capacity in cardiac patients and in the effects of disease-related impairments on cardiorespiratory dynamics during exercise testing. Therefore, this study was conducted to examine the exercise responses of 26 subjects (ages 37-66 years) to a graded exercise test. Subjects were divided into three groups based on clinical status: apparently healthy (AH; N=8); cardiacs receiving beta-blockers (C-BB; N=8); cardiacs not receiving beta-blockers (Câ NBB; N=lO). / Master of Science
250

Bilateral L1 and L2 dorsal root ganglion blocks for discogenic low-back pain.

Richardson, J., Collinghan, N., Scally, Andy J., Gupta, S. January 2000 (has links)
It is possible that interruption of nociceptive input from intervertebral discs can be modulated through bilateral L1 and L2 dorsal root ganglia (DRG) blockade. In order to test this hypothesis, we prospectively collected data from patients with low-lumbar pain, accurately diagnosed as discogenic using provocation discography. Methods Twelve patients were recruited with a mean (SD) symptom duration of 13.7 (8.2) years. Bilateral DRG blocks of L1 and L2 were performed using methylprednisolone 80 mg, clonidine 75 µg and 0.5% bupivacaine 4 ml in each patient. Results Analysis of Brief Pain Inventories showed no significant change in pain scores. Conclusion We conclude that blocks of this nociceptive pathway in humans using bilateral DRG blocks has no therapeutic value.

Page generated in 0.0665 seconds