• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 16
  • 10
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 25
  • 21
  • 18
  • 18
  • 18
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Prss56Cre, un nouvel outil pour l'étude de la neurogenèse adulte chez la souris / Prss56Cre, a novel tool for the study of adult neurogenesis in the mouse

Jourdon, Alexandre 15 April 2015 (has links)
Le gène Prss56 code pour une sérine protéase impliquée dans le développement de l'oeil humain et certaines de ses pathologies. Le patron d'expression et la fonction de Prss56 dans le reste du système nerveux central sont cependant inconnus. Dans cette étude, j'utilise l'allèle murin Prss56Cre, comportant l'insertion de la recombinase Cre au sein du locus, pour établir le patron d'expression de ce gène et tracer le devenir des cellules exprimant Prss56. Je montre que Prss56 est spécifiquement exprimé dans trois niches neurogéniques : le gyrus dentelé (GD), la zone sous-ventriculaire (SVZ) et la zone ventriculaire de l'hypothalamus (ZVH). Dans le GD embryonnaire, Prss56 est exprimé par une sous-population de glie radiaire. La migration et la différenciation des cellules tracées récapitulent les étapes successives de la neurogenèse du GD et l'établissement d'une sous-population de cellules souches neurales adultes (CSNa). Dans la SVZ, Prss56 est exprimé après la naissance dans une sous-population de CSNa principalement localisée dans la partie médio-ventrale du mur latéral. Cette sous-population génère préférentiellement des cellules granulaires profondes et des cellules périglomérulaires Calbindin-positives du bulbe olfactif. Enfin, Prss56 est exprimé par une sous-population de tanycytes alpha-2, les potentielles cellules souches de la ZVH adulte. Je montre que certains tanycytes tracés déplacent leur soma vers le parenchyme et pourraient être à l'origine d'un nouveau type cellulaire de ce territoire. A travers ces diverses observations, ce travail établit que la lignée Prss56Cre constitue un outil idéal pour l'étude de nombreux aspects de la neurogenèse adulte. / The Prss56 gene encodes a serine protease involved in eye pathologies and development in humans. Prss56 expression pattern and function in the rest of the central nervous system were however unknown. Here, I used a knock-in allele in the mouse, Prss56Cre, carrying a Cre recombinase insertion in the locus, to establish the pattern of expression of the gene and to trace the derivatives of Prss56-expressing cells. I found that, in the adult mouse, Prss56 is specifically expressed in three neurogenic niches: the dentate gyrus (DG), the subventricular zone (SVZ) and the hypothalamus ventricular zone (HVZ). In the prospective DG, Prss56 is expressed during embryogenesis in a subpopulation of radial glia. Consistently, the pattern of migration and differentiation of traced cells during development recapitulates the successive steps of DG neurogenesis, including the formation of a subpopulation of adult neural stem cells (aNSC). In the SVZ, Prss56 is expressed after birth in a subpopulation of aNSC mainly localized in the medial-ventral region of the lateral wall. This subpopulation preferentially gives rise to deep granule and calbindin-positive periglomerular cells in the olfactory bulb. Finally, Prss56 is also expressed in a subpopulation of alpha2-tanycytes, potential aNSC of the adult HVZ. My observations reveal that some traced tanycytes translocate their soma into the parenchyma and might give rise to a novel cell type in this territory. In conclusion, this study establishes the Prss56Cre line as a novel and efficient tool to study various aspects of adult neurogenesis in the mouse.
42

Genetic regulation of adult hippocampal neurogenesis: A Systems genetics approach using BXD recombinant inbred mouse strains

Subramanian Shanmugam, Suresh Kannan 01 June 2012 (has links)
Adult hippocampal neurogenesis is regulated at various levels and by various factors. Genetic influence is an important key determinant of adult neurogenesis and exerts its effects at all levels. In vivo studies have suggested that adult hippocampal neurogenesis is highly variable and heritable among different laboratory strains of mice. To dissect the genetic effect from other contributing factors, it is necessary to study adult neurogenesis under highly controlled environment conditions. We extracted adult hippocampal precursor cells (AHPCs) from 20 strains of the BXD set of recombinant inbred mice, cultured them and studied the effect of genetic background on neurogenesis. The BXD panel consists of mouse lines derived from an intercross between inbred parentals C57BL/6J and DBA/2J. Both of the parentals are fully sequenced and all the strains are well characterized in terms of genotypic and phenotypic characteristics. This allows us to use advanced genetic techniques to identify novel genomic loci and gene-gene interactions important in adult neurogenesis. Comparison of the AHPCs from 20 BXD strains, with respect to cell proliferation and neuronal and astrocytic differentiation in vitro, revealed a large variation for these traits across the strains. Proliferation, as measured by BrdU incorporation, showed over two- fold differences between the extremes. Similar differences were observed for neurogenic (4-fold) and astrogenic differentiation (2-fold). These three traits all showed strong heritability values indicating that the differences were mainly attributed to the genetic component. QTL mapping, with these phenotypic data, revealed that there was no major contribution from single loci controlling these traits. Instead, we found many loci with smaller effects associated with these traits. Gene expression profiling using RNA samples from proliferating cultures of the 20 BXD mice strains yielded two cis eQTL candidates that directly regulated proliferation, LRP6 and Chchd8. LRP6 is well known as a co-receptor of Wnt signaling, but the function of Chchd8 is not known. Further experimentation, using over expression and gene silencing demonstrated that LRP6 negatively regulates AHPCs proliferation. Thus, from this study using a system genetics approach, we were able to identify, LRP6 as a novel regulator of adult hippocampal neurogenesis.
43

Neurogenesis in the adult brain, gene networks, and Alzheimer's Disease

Horgusluoglu, Emrin 15 May 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / New neurons are generated throughout adulthood in two regions of the brain, the dentate gyrus of the hippocampus, which is important for memory formation and cognitive functions, and the sub-ventricular zone of the olfactory bulb, which is important for the sense of smell, and are incorporated into hippocampal network circuitry. Disruption of this process has been postulated to contribute to neurodegenerative disorders including Alzheimer’s disease [1]. AD is the most common form of adult-onset dementia and the number of patients with AD escalates dramatically each year. The generation of new neurons in the dentate gyrus declines with age and in AD. Many of the molecular players in AD are also modulators of adult neurogenesis, but the genetic mechanisms influencing adult neurogenesis in AD are unclear. The overall goal of this project is to identify candidate genes and pathways that play a role in neurogenesis in the adult brain and to test the hypotheses that 1) hippocampal neurogenesis-related genes and pathways are significantly perturbed in AD and 2) neurogenesis-related pathways are significantly associated with hippocampal volume and other AD-related biomarker endophenotypes including brain deposition of amyloid-β and tau pathology. First, potential modulators of adult neurogenesis and their roles in neurodegenerative diseases were evaluated. Candidate genes that control the turnover process of neural stem cells/precursors to new functional neurons during adult neurogenesis were manually curated using a pathway-based systems biology approach. Second, a targeted neurogenesis pathway-based gene analysis was performed resulting in the identification of ADORA2A as associated with hippocampal volume and memory performance in mild cognitive impairment and AD. Third, a genome-wide gene-set enrichment analysis was conducted to discover associations between hippocampal volume and AD related endophenotypes and neurogenesis-related pathways. Within the discovered neurogenesis enriched pathways, a gene-based association analysis identified TESC and ACVR1 as significantly associated with hippocampal volume and APOE and PVLR2 as significantly associated with tau and amyloid beta levels in cerebrospinal fluid. This project identifies new genetic contributions to hippocampal neurogenesis with translational implications for novel therapeutic targets related to learning and memory and neuroprotection in AD.
44

Stem-like cells and glial progenitors in the adult mouse suprachiasmatic nucleus

Beligala, Dilshan Harshajith 06 December 2019 (has links)
No description available.
45

Alpha-Synuclein Pathology Coincides With Increased Number of Early Stage Neural Progenitors in the Adult Hippocampus

Bender, Hannah, Fietz, Simone A., Richter, Franziska, Stanojlovic, Milos 03 April 2023 (has links)
Alpha-synuclein pathology driven impairment in adult neurogenesis was proposed as a potential cause of, or at least contributor to, memory impairment observed in both patients and animal models of Parkinson’s disease (PD) and Dementia with Lewy Bodies (DLB). Mice overexpressing wild-type alpha-synuclein under the Thy-1 promoter (Thy1-aSyn, line 61) uniquely replicate early cognitive deficits together with multiple other characteristic motor and non-motor symptoms, alpha-synuclein pathology and dopamine loss. Here we report overt intracellular accumulation of phosphorylated alphasynuclein in the hippocampus of these transgenic mice. To test whether this alters adult neurogenesis and total number of mature neurons, we employed immunohistochemistry and an unbiased stereology approach to quantify the distinct neural progenitor cells and neurons in the hippocampal granule cell layer and subgranular zone of 6 (prodromal stage) and 16-month (dopamine loss) old Thy1-aSyn mice. Surprisingly, we observed an increase in the number of early stage, i.e., Pax6 expressing, progenitors whereas the numbers of late stage, i.e., Tbr2 expressing, progenitors and neurons were not altered. Astroglia marker was increased in the hippocampus of transgenic mice, but this was not specific to the regions where adult neurogenesis takes place, arguing against a commitment of additional early stage progenitors to the astroglia lineage. Together, this uncovers a novel aspect of alpha-synuclein pathology in adult neurogenesis. Studying its mechanisms in Thy1-aSyn mice could lead to discovery of effective therapeutic interventions for cognitive dysfunction in PD and DLB.
46

Régulation par l’apprentissage de la neurogenèse adulte dans le bulbe olfactif et rôle des nouveaux neurones / Regulation by learning of adult neurogenesis in the olfactory bulb and role of newborn neurons

Sultan, Sébastien 26 January 2010 (has links)
Le bulbe olfactif est le siège d’une neurogenèse adulte permanente. Le nombre de nouveaux neurones issus de cette neurogenèse adulte est modulé par l’apprentissage, ce qui suggère un rôle des néoneurones dans la mémoire olfactive. Au cours de ce travail, nous avons montré que l’apprentissage olfactif associatif recrute des nouveaux neurones granulaires dans des régions de la couche granulaire du bulbe olfactif spécifiques à l’odeur apprise. Nous avons également mis en évidence un lien entre la force de l’apprentissage olfactif, sa rétention et la modulation de la neurogenèse qui en résulte. En bloquant la neurogenèse bulbaire à l’aide d’un agent antimitotique nous avons montré que les nouveaux interneurones ne sont pas indispensables à l’acquisition d’une tâche olfactive associative, mais le sont pour sa rétention à long terme. Puis, en utilisant une approche comportementale, nous avons aboli l’association olfactive acquise lors d’un apprentissage et nous avons observé que les nouveaux neurones initialement sauvés dans le bulbe olfactif par cet apprentissage disparaissaient prématurément, confirmant ainsi leur rôle dans le support de la mémoire olfactive. Enfin, nous avons montré que suite à un apprentissage olfactif, une régulation locale de la mort cellulaire est mise en jeu qui pourrait être à l’origine de la sélection des néoneurones dans les régions traitant l’odeur apprise. Dans l’ensemble nos données indiquent un rôle crucial des neurones formés à l’âge adulte dans le bulbe olfactif dans la mémoire olfactive / Adult-born neurons are added to the mammalian olfactory bulb, and their number is modulated by learning suggesting that they could play a role in olfactory memory. In this work, we demonstrate that retrieval of an associative olfactory task recruits newborn neurons in odor-specific areas of the olfactory bulb and in a manner that depends on the strength of learning. By blocking neurogenesis during this olfactory task, we then demonstrate that acquisition is not dependent on neurogenesis while long-term retention of the task is abolished by neurogenesis blockade. In a second part, using an ecological approach, we show that behaviorally breaking a previously learned odor-reward association prematurely suppresses newborn neurons selected to survive during initial learning. Our results indicate that the newborn neurons saved by olfactory learning die when the odor looses its associative value, thus confirming that these newborn neurons support the memory trace. Finally, during and after learning, cell death and BrdU positive cells were mapped in the granule cell layer. We find that regions showing high BrdU-positive cell density exhibit the lowest rate of cell death indicating local regulation of cell death shaping the spatial distribution of newborn neurons in the granule cell layer of the olfactory bulb. Taken together, our findings reveal the crucial role of bulbar adult born neurons in olfactory memory
47

Vieillissement olfactif chez la souris normale et chez la souris APP/PS1, modèle de la maladie d'Alzheimer : implications de la neurogenèse et du système noradrénergique / Olfactory aging in normal mice and in an Alzheimer disease model : implication of neurogenesis and noradrenergic system

Rey, Nolwen 01 December 2010 (has links)
Au cours du vieillissement normal et du vieillissement pathologique de type Alzheimer, des altérations olfactives surviennent. Très précoces dans la maladie d'Alzheimer, ces troubles pourraient être signe du développement de la maladie, bien avant l'apparition des signes de déclin cognitif. Il nous paraissait donc important de caractériser et de différencier de manière précise les troubles olfactifs associés au vieillissement normal de ceux associés au vieillissement pathologique et leurs corrélats cellulaires. Notre première étude a pour objectif de clarifier le vieillissement de la fonction olfactive et sa plasticité chez le rongeur. Dans ce travail, le vieillissement apparaît comme un processus complexe, qui n'est pas une simple dégradation générale de la fonction olfactive, mais un processus qui touche de manière hétérogène les différents aspects de la perception olfactive, et dont le signe le plus marquant semble être la perte de plasticité des performances olfactives, de la neurogenèse et du système noradrénergique en réponse à une stimulation. Nous montrons que la mémoire olfactive et sa modulation par l'enrichissement de l'environnement olfactif est plus sensible au vieillissement normal que la discrimination olfactive. Le fonctionnement basal (discrimination facile et mémoire à très court terme) persiste, bien que la neurogenèse soit altérée de manière drastique et cela malgré le rôle majeur des néo neurones pour la fonction olfactive chez l'animal jeune. Nos données mettent également en évidence une altération biphasique de la neurogenèse (réduction de prolifération, puis chez les animaux sénescents, une altération de la différenciation et de la survie des néo-neurones), et une réponse plastique du système noradrénergique qui persiste à âge moyen, alors que la neurogenèse ne réponds déjà plus à l'enrichissement olfactif. Ce travail apporte ainsi les bases nécessaires pour une comparaison des altérations olfactives liées à l'âge avec celles présentes dans la MA. Notre seconde étude nous a permis de confirmer l'existence de déficits olfactifs précoces chez le modèle murin APP/PS1 de maladie d'Alzheimer, ainsi que l'implication du système noradrénergique dans ces altérations. Induite par un traitement chronique au DSP4, la déplétion noradrénergique aggrave le phénotype amyloïde dans le BO, et accentue sévèrement les troubles olfactifs. Ces données contribuent à valider l'utilisation de modèle olfactif pour l'étude des altérations précoces observées dans la maladie d'Alzheimer, en combinant la déplétion noradrénergique pour modéliser les altérations observées dans la maladie humaine, et étudier les mécanismes physiopathologiques survenant dans la MA. / During normal aging and pathological aging like Alzheimer's disease appear olfactory deficits. These deficits occur very early in Alzheimer's disease and could be among the first signs of the disease. Thus, the definition, comparison of olfactory trouble appearing in normal aging versus Alzheimer's disease and their cellular correlates is a crucial step toward comprehension of the disease. The first study was aimed at clarifying olfactory function in aging and it's plasticity in normal mice. Aging appears as a very complex process, touching heterogenatly olfactory components. The major sign of aging is the lack of plasticity of olfactory performances, neurogenic processes and noradrenergic system in response to an olfactory enrichment. Our datas show that olfactory memory and it's modulation by olfactory enrichment is more sensible to aging than olfactory discrimination. Despite the strong impairment of neurogenesis in aging, and regardless to it's major role in olfactory processes in young animals, basal olfactory performances (easy discrimination and very short term memory) remains intact in aged animals. We also show that olfactory neurogenesis is impaired in a biphasic way during aging (first, reduction of proliferation, and then in senescent mice, impairment of differentiation and survival in the olfactory bulb). Noradrenergic system plasticity persists in middle aged animals, contrarily to neurogenesis which does not respond to olfactory enrichment. Thus, this work gives us the background necessary to compare olfactory deficits in normal and pathological aging. Our second study confirms that olfactory troubles occurs early in APP/PS1 mice, our Alzheimer's disease model, and confirms the implication of noradrenergic deficits. A chronic depletion in noradrenalin produced by treatments with DSP4 aggravates amyloïd deposition and olfactory deficits in our mice. These datas provide a strong support to the use of olfactory modality to study early signs of the disease, and to combine noradrenergic depletion to reproduce clinical and physiopatholocical signs of Alzheimer's disease in human.
48

Adult brain plasticity

Klempin, Friederike Claudia 13 November 2008 (has links)
Der Hippocampus ist eine von zwei Gehirnregionen, in der zeitlebens kontinuierlich neue Nervenzellen gebildet werden. Er spielt eine wichtige Rolle bei der Gedächtniskonsolidierung und wird mit der funktionellen Entstehung neurodegenerativer Erkrankungen in Verbindung gebracht. Strukturveränderungen im erwachsenen Gehirn, die mit einer Depression einhergehen, sind laut Literatur auf einen geringen Serotoninspiegel und reduzierte hippocampale Neurogenese zurückzuführen. Selektive Serotonin-Wiederaufnahmehemmer (SSRI) erhöhen die Serotoninkonzentration im synaptischen Spalt und üben einen positiven Effekt auf die adulte Neurogenese aus. In der vorliegenden Arbeit wird untersucht, wie Veränderungen in der Serotonin (5-HT)-Neurotransmission durch einmalige oder chronische Gaben von Fluoxetin und speziellen Agonisten und Antagonisten für die Serotoninrezeptoren 5-HT1a und 5-HT2 in der erwachsenen Maus die Proliferation und Differenzierung von neugebildeten Nervenzellen im Gyrus dentatus beeinflussen. Die Ergebnisse zeigen, dass ein konträres Agieren beider Rezeptoren zu einem ausgewogenen Serotoninspiegel führt. 5-HT1a- und 5-HT2c-Rezeptoren haben einen Einfluss auf das Überleben neugebildeter Nervenzellen, wobei sie unterschiedliche Entwicklungsstadien innerhalb der adulten Neurogenese kontrollieren. Die vorliegende Arbeit bekräftigt außerdem, dass die chronische Gabe von Fluoxetin die adulte Neurogenese steigert. / The hippocampus as one region with ongoing neurogenesis throughout life contributes to the formation of long-term memory and has also been implicated in the pathology of major depression. Studies suggest that depression might be due to decreased levels of serotonin and reduced neurogenesis in the adult brain and that the beneficial effects of selective serotonin reuptake inhibitors would require adult hippocampal neurogenesis. Here, I investigated how modulation of serotonergic neurotransmission by acute and chronic treatment with the antidepressant fluoxetine, and selective serotonin receptor agonists and antagonists in adult mice influences precursor cell activity during development. I focused on 5-HT1a and 5-HT2 receptors as major mediators of serotonin action. The present findings suggest that an opposed action of 5-HT1a and 5-HT2c receptor subtypes result in a balanced regulation of serotonin levels in the dentate gyrus. Both receptors differentially affect intermediate cell stages in adult hippocampal neurogenesis and play an important role in the survival of newly generated neurons. Furthermore, this study confirms that chronic fluoxetine treatment increases adult neurogenesis. In conclusion, the latency of onset of fluoxetine action can be explained by a balanced interplay of 5-HT1a and 5-HT2c receptor subtypes.
49

Aktivitätsabhängige Regulation von Neurogenese im erwachsenen Hippocampus

Kempermann, Gerd 29 January 2002 (has links)
Das erwachsene Gehirn enthält neuronale, multipotente Stammzellen, aus denen in den beiden bekannten neurogenen Regionen des Gehirn, im Hippocampus und im olfaktorischen System, neue Nervenzellen hervorgehen. Aus Transplantationsstudien und anderen Untersuchungen weiß man, daß es die zelluläre Umgebung ist, die die neurogene Permissivität und damit die Entwicklung einer reifen neuen Nervenzelle aus einer Stamm- oder Vorläuferzelle, bestimmt. Die Schlüsselfrage lautet daher: Was macht eine neurogene Region neurogen? Neurogenität ist mehr als die Präsenz von neuralen Stammzellen. Die aktivitätsabhängige Regulation adulter hippocampaler Neurogenese stellt eine physiologische, positive Modulation von Neurogenität im erwachsenen Gehirn dar. Aktivitätsabhängige Regulation adulter hippocampaler Neurogenese ist vielstufig und kein An/Aus-Phänomen. Die unterschiedlichen Stufen der Regulation unterliegen unterschiedlicher genetischer Determination und unterschiedlicher Empfindlichkeit auf aktivitätsabhängige Stimuli. Die Steuerung des Überlebens neugeborener Zellen stellt möglicherweise den entscheidenden Schritt auf dem Weg zu einem neuen Neuron dar. Die aktivitätsabhängige Selektion durch eine überlebensfördernde Wirkung rekrutiert jedoch aus einem Pool proliferierender Vorläuferzellen, die das neurogene Potential darstellen. Die subtile Regulation adulter hippocampaler Neurogenese durch funktionsabhängige Stimuli legt eine Relevanz für hippocampale Funktion, insbesondere Lern- und Gedächtnisvorgänge nahe. Entsprechend muß aber auch eine Bedeutung für hippocampale Pathologie diskutiert werden. Das Verständnis darüber, wie Neurogenität funktions- und aktivitätsabhängig modulierbar ist, ist von größter Relevanz für die Frage, ob und wie sich Neurogenese aus ruhenden neuronalen Stamm- und Vorläuferzellen auch außerhalb neurogener Regionen induzieren und in therapeutischer Absicht nutzen läßt. / The adult brain contains neuronal, multipotent stem cells. In two neurogenic regions of the adult brain, hippocampus and olfactory system, new neurons are generated from these stem cells. From transplantation studies and other investigations it is known that the cellular microenvironment provides the neurogenic permissiveness and determines the development of a mature new neuron from a stem or progenitor cell. Thus, the key question is, what defines a neurogenic region as neurogenic, if it is not the presence of neural stem cells alone. The activity-dependent regulation of adult hippocampal neurogenesis represents a physiologic and positive modulation of neurogenic permissiveness in the adult brain. Activity-dependent regulation of adult hippocampal neurogenesis occurs on multiple steps and is not an on/off phenomenon. The different levels of regulation are differentially influenced by genetic determination and different susceptibility to activity-dependent stimuli. The regulation of the survival of a newly generated cells might be the key step in the development of a new neuron. The activity-dependent recruitment of new neurons by means of a survival-promoting effect acts upon a pool of proliferating progenitor cells, which represent the neurogenic potential. The subtle regulation of adult neurogenesis by functional stimuli suggests a relevance of adult hippocampal neurogenesis for hippocampal function, in particular learning and memory. Accordingly, a potential relevance for hippocampal pathology has to be considered. Insights on how neurogenic permissiveness can be modulated in response to functional stimuli has important implications for the question, if and how neurogenesis from quiescent neuronal stem or progenitor cells can be induced inside and outside of neurogenic regions of the adult brain and can be used for therapeutic purposes.
50

Caractérisation des facteurs de régulation de la prolifération des cellules souches neurales dans le cerveau adulte / Characterization of the factors regulating the proliferation of adult neural stem cells

Daynac, Mathieu 30 September 2013 (has links)
Les cellules souches neurales quiescentes (CSN) sont le réservoir de la neurogenèse adulte, permettant de produire des nouveaux neurones tout au long de la vie. Cependant, la neurogenèse décroit au cours du vieillissement, provoquant des déclins cognitifs incurables. Afin de mieux comprendre les mécanismes qui contrôlent la prolifération des CSN, nous avons mis en place une méthode de tri par cytométrie en flux qui permet pour la première fois d’isoler les CSN quiescentes et leurs cellules filles dans la ZSV adulte murine. Cette technique nous a permis de prouver que le blocage de la voie GABAAR in vivo provoque l’entrée en cycle des CSN quiescentes. Ainsi, les signaux GABA produits par les neuroblastes dans la ZSV permettent de maintenir les CSN dans leur état de quiescence. Au cours du vieillissement, nous montrons que la production progressive de TGFβ1 par les cellules endothéliales de la niche allonge la phase G1 des CSN activées, diminuant sensiblement la production de nouveaux neurones, sans toutefois diminuer le stock de CSN. Nous mettons ainsi en évidence deux voies majeures contrôlant la prolifération des CSN in vivo, la voie du GABAAR et la voie TGF-β/Smad-3. En vue d’une application thérapeutique, nous prouvons que leur blocage pharmacologique permet de stimuler efficacement la neurogenèse in vivo. / Quiescent neural stem cells (NSCs) are considered the reservoir for adult neurogenesis, generating new neurons throughout life. However, neurogenesis decreases during aging, causing a progressive decline that is currently untreatable. To study the regulatory mechanisms of NSCs proliferation, we set up a new technique allowing the isolation of quiescent NSCs and their progeny. We show that GABAAR directly regulates NSCs quiescence in vivo as the depletion of GABA-producing neuroblasts or GABAAR pathway pharmacological blockade provoked NSCs cell cycle entry in the SVZ. During aging, the stock of NSCs is not perturbed, but we show that an over-production of TGFβ1 by brain endothelial cells directly lengthens activated NSCs G1 phase, strongly decreasing the production of new neurons. These findings highlight GABAAR and TGF-β/Smad-3 as two major pathways controlling NSCs proliferation. In line with a future therapeutic application, we also prove that their blocking stimulates endogenous neurogenesis in vivo.

Page generated in 0.478 seconds