Spelling suggestions: "subject:"aktiven filamentsystem"" "subject:"aktiven elementsysteme""
1 |
Dynamics of Active Filament Systems / The Role of Filament Polymerization and Depolymerization / Dynamik aktiver Filament-SystemeZumdieck, Alexander 14 January 2006 (has links) (PDF)
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie "filament treadmilling", also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln. / Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.
|
2 |
Dynamics of Active Filament Systems: The Role of Filament Polymerization and DepolymerizationZumdieck, Alexander 16 December 2005 (has links)
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie "filament treadmilling", also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln. / Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.
|
Page generated in 0.0905 seconds