• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Movements of molecular motors: diffusion and directed walks

Klumpp, Stefan. January 2003 (has links) (PDF)
Potsdam, University, Diss., 2003.
2

Capped colloids as model systems for condensed matter

Baraban, Larysa. January 2008 (has links)
Konstanz, Univ., Diss., 2008.
3

Ratchet models of molecular motors

Jaster, Nicole January 2003 (has links)
Transportvorgänge in und von Zellen sind von herausragender Bedeutung für das Überleben des Organismus. Muskeln müssen sich kontrahieren können, Chromosomen während der Mitose an entgegengesetzte Enden der Zelle bewegt und Organellen, das sind von Membranen umschlossene Kompartimente, entlang molekularer Schienen transportiert werden. <br /> Molekulare Motoren sind Proteine, deren Hauptaufgabe es ist, andere Moleküle zu bewegen. Dazu wandeln sie die bei der ATP-Hydrolyse freiwerdende chemische Energie in mechanische Arbeit um. Die Motoren des Zellskeletts gehören zu den drei Superfamilien Myosin, Kinesin und Dynein. Ihre Schienen sind Filamente des Zellskeletts, Actin und die Microtubuli. <br /> In dieser Arbeit werden stochastische Modelle untersucht, welche dazu dienen, die Fortbewegung dieser linearen molekularen Motoren zu beschreiben. Die Skala, auf der wir die Bewegung betrachten, reicht von einzelnen Schritten eines Motorproteins bis in den Bereich der gerichteten Bewegung entlang eines Filaments. Ein Einzelschritt überbrückt je nach Protein etwa 10 nm und wird in ungefähr 10 ms zurückgelegt. Unsere Modelle umfassen M Zustände oder Konformationen, die der Motor annehmen kann, während er sich entlang einer eindimensionalen Schiene bewegt. An K Orten dieser Schiene sind Übergänge zwischen den Zuständen möglich. Die Geschwindigkeit des Proteins lässt sich in Abhängigkeit von den vertikalen Übergangsraten zwischen den einzelnen Zuständen analytisch bestimmen. Wir berechnen diese Geschwindigkeit für Systeme mit bis zu vier Zuständen und Orten und können weiterhin eine Reihe von Regeln ableiten, die uns einschätzen helfen, wie sich ein beliebiges vorgegebenes System verhalten wird. <br /> Darüber hinaus betrachten wir entkoppelte Subsysteme, also einen oder mehrere Zustände, die keine Verbindung zum übrigen System haben. Mit einer bestimmten Wahrscheinlichkeit kann ein Motor einen Zyklus von Konformationen durchlaufen, mit einer anderen Wahrscheinlichkeit einen davon unabhängigen anderen. <br /> Aktive Elemente werden in realen Transportvorgängen durch Motorproteine nicht auf die Übergänge zwischen den Zuständen beschränkt sein. In verzerrten Netzwerken oder ausgehend von der diskreten Mastergleichung des Systems können auch horizontale Raten spezifiziert werden und müssen weiterhin nicht mehr die Bedingungen der detaillierten Balance erfüllen. Damit ergeben sich eindeutige, komplette Pfade durch das jeweilige Netzwerk und Regeln für die Abhängigkeit des Gesamtstroms von allen Raten des Systems. Außerdem betrachten wir die zeitliche Entwicklung für vorgegebene Anfangsverteilungen. <br /> Bei Enzymreaktionen gibt es die Idee des Hauptpfades, dem diese bevorzugt folgen. Wir bestimmen optimale Pfade und den maximalen Fluss durch vorgegebene Netzwerke. <br /> Um darüber hinaus die Geschwindigkeit des Motors in Abhängigkeit von seinem Treibstoff ATP angeben zu können, betrachten wir mögliche Reaktionskinetiken, die den Zusammenhang zwischen den unbalancierten Übergangsraten und der ATP-Konzentration bestimmen. Je nach Typ der Reaktionskinetik und Anzahl unbalancierter Raten ergeben sich qualitativ unterschiedliche Verläufe der Geschwindigkeitskurven in Abhängigkeit von der ATP-Konzentration. <br /> Die molekularen Wechselwirkungspotentiale, die der Motor entlang seiner Schiene erfährt, sind unbekannt.Wir vergleichen unterschiedliche einfache Potentiale und die Auswirkungen auf die Transportkoeffizienten, die sich durch die Lokalisation der vertikalen Übergänge im Netzwerkmodell im Vergleich zu anderen Ansätzen ergeben. / Transport processes in and of cells are of major importance for the survival of the organism. Muscles have to be able to contract, chromosomes have to be moved to opposing ends of the cell during mitosis, and organelles, which are compartments enclosed by membranes, have to be transported along molecular tracks.<br /> Molecular motors are proteins whose main task is moving other molecules.For that purpose they transform the chemical energy released in the hydrolysis of ATP into mechanical work. The motors of the cytoskeleton belong to the three super families myosin, kinesin and dynein. Their tracks are filaments of the cytoskeleton, namely actin and the microtubuli. <br /> Here, we examine stochastic models which are used for describing the movements of these linear molecular motors. The scale of the movements comprises the regime of single steps of a motor protein up to the directed walk along a filament. A single step bridges around 10 nm, depending on the protein, and takes about 10 ms, if there is enough ATP available. Our models comprise M states or conformations the motor can attain during its movement along a one-dimensional track. At K locations along the track transitions between the states are possible. The velocity of the protein depending on the transition rates between the single states can be determined analytically. We calculate this velocity for systems of up to four states and locations and are able to derive a number of rules which are helpful in estimating the behaviour of an arbitrary given system.<br /> Beyond that we have a look at decoupled subsystems, i.e., one or a couple of states which have no connection to the remaining system. With a certain probability a motor undergoes a cycle of conformational changes, with another probability an independent other cycle. <br /> Active elements in real transport processes by molecular motors will not be limited to the transitions between the states. In distorted networks or starting from the discrete Master equation of the system, it is possible to specify horizontal rates, too, which furthermore no longer have to fulfill the conditions of detailed balance. Doing so, we obtain unique, complete paths through the respective network and rules for the dependence of the total current on all the rates of the system. Besides, we view the time evolutions for given initial distributions. <br /> In enzymatic reactions there is the idea of a main pathway these reactions follow preferably. We determine optimal paths and the maximal flow for given networks. <br /> In order to specify the dependence of the motor's velocity on its fuel ATP, we have a look at possible reaction kinetics determining the connection between unbalanced transitions rates and ATP-concentration. Depending on the type of reaction kinetics and the number of unbalanced rates, we obtain qualitatively different curves connecting the velocity to the ATP-concentration. <br /> The molecular interaction potentials the motor experiences on its way along its track are unknown. We compare different simple potentials and the effects the localization of the vertical rates in the network model has on the transport coefficients in comparison to other models.
4

Non-equilibrium dynamics of adsorbed polymers and filaments

Kraikivski, Pavel January 2005 (has links)
In the present work, we discuss two subjects related to the nonequilibrium dynamics of polymers or biological filaments adsorbed to two-dimensional substrates. <br><br> The first part is dedicated to thermally activated dynamics of polymers on structured substrates in the presence or absence of a driving force. The structured substrate is represented by double-well or periodic potentials. We consider both homogeneous and point driving forces. Point-like driving forces can be realized in single molecule manipulation by atomic force microscopy tips. Uniform driving forces can be generated by hydrodynamic flow or by electric fields for charged polymers. <br><br> In the second part, we consider collective filament motion in motility assays for motor proteins, where filaments glide over a motor-coated substrate. The model for the simulation of the filament dynamics contains interactive deformable filaments that move under the influence of forces from molecular motors and thermal noise. Motor tails are attached to the substrate and modeled as flexible polymers (entropic springs), motor heads perform a directed walk with a given force-velocity relation. We study the collective filament dynamics and pattern formation as a function of the motor and filament density, the force-velocity characteristics, the detachment rate of motor proteins and the filament interaction. In particular, the formation and statistics of filament patterns such as nematic ordering due to motor activity or clusters due to blocking effects are investigated. Our results are experimentally accessible and possible experimental realizations are discussed. / In der vorliegenden Arbeit behandeln wir zwei Probleme aus dem Gebiet der Nichtgleichgewichtsdynamik von Polymeren oder biologischen Filamenten, die an zweidimensionale Substrate adsorbieren. <br><br> Der erste Teil befasst sich mit der thermisch aktivierten Dynamik von Polymeren auf strukturierten Substraten in An- oder Abwesenheit einer treibenden Kraft. Das strukturierte Substrat wird durch Doppelmulden- oder periodische Potentiale dargestellt. Wir betrachten sowohl homogene treibende Kräfte als auch Punktkräfte. Punktkräfte können bei der Manipulation einzelner Moleküle mit die Spitze eines Rasterkraftmikroskops realisiert werden. Homogene Kräfte können durch einen hydrodynamischen Fluss oder ein elektrisches Feld im Falle geladener Polymere erzeugt werden. <br><br> Im zweiten Teil betrachten wir die kollektive Bewegung von Filamenten in Motility-Assays, in denen Filamente über ein mit molekularen Motoren überzogenes Substrat gleiten. Das Modell zur Simulation der Filamentdynamik beinhaltet wechselwirkende, deformierbare Filamente, die sich unter dem Einfluss von Kräften, die durch molekulare Motoren erzeugt werden, sowie thermischem Rauschen bewegen. Die Schaftdomänen der Motoren sind am Substrat angeheftet und werden als flexible Polymere (entropische Federn) modelliert. Die Kopfregionen der Motoren vollführen eine gerichtete Schrittbewegung mit einer gegebenen Kraft-Geschwindigkeitsbeziehung. Wir untersuchen die kollektive Filamentdynamik und die Ausbildung von Mustern als Funktion der Motor- und der Filamentdichte, der Kraft-Geschwindigkeitscharakteristik, der Ablöserate der Motorproteine und der Filamentwechselwirkung. Insbesondere wird die Bildung und die Statistik der Filamentmuster, wie etwa die nematische Anordnung aufgrund der Motoraktivität oder die Clusterbildung aufgrund von Blockadeeffekten, untersucht. Unsere Ergebnisse sind experimentell zugänglich und mögliche experimentelle Realisierungen werden diskutiert.
5

Modulation of Cargo Transport and Sorting through Endosome Motility and Positioning

Höpfner, Sebastian 28 October 2005 (has links) (PDF)
Utilizing various systems such as cell-based assays but also multicellular organisms such as Drosophila melanogaster and C.elegans, for example, the endocytic system has been shown to consist of a network of biochemically and morphologically distinct organelles that carry out specialized tasks in the uptake, recycling and catabolism of growth factors and nutrients, serving a plethora of key biological functions (Mellman, 1996). Different classes of endosomes were found to exhibit a characteristic intracellular steady state distribution. This distribution pattern observed at steady state results from a dynamic interaction of endosomes with the actin and the microtubule cytoskeleton. It remains unclear, however, which microtubule-based motors besides Dynein control the intracellular distribution and motility of early endosomes and how their function is integrated with the sorting and transport of cargo. The first part of this thesis research outlines the search for such motor. I describe the identification of KIF16B which functions as a novel endocytic motor protein. This molecular motor, a kinesin-3, transports early endosomes to the plus end of microtubules, in a process regulated by the small GTPase Rab5 and its effector, the phosphatidylinositol-3-OH kinase hVPS34. In vivo, KIF16B overexpression relocated early endosomes to the cell periphery and inhibited transport to the degradative pathway. Conversely, expression of dominant-negative mutants or ablation of KIF16B by RNAi caused the clustering of early endosomes to the peri-nuclear region, delayed receptor recycling to the plasma membrane and accelerated degradation. These results suggest that KIF16B, by regulating the plus end motility of early endosomes, modulates the intracellular localization of early endosomes and the balance between receptor recycling and degradation. In displaying Rab5 and PI(3)P-containing cargo selectivity, a remarkable property of KIF16B is that it is subjected to the same regulatory principles governing the membrane tethering and fusion machinery (Zerial and McBride, 2001). Since KIF16B can modulate growth factor degradation, we propose that this motor could have also important implications for signaling. Importantly, KIF16B has provided novel insight into how intracellular localization of endosomes governs the transport activity of these organelles. The second part of this thesis describes the proof-of-principle of a genome-wide screening strategy aimed at gaining insights into the next level of understanding: How the spatial distribution of organelles is linked to their function in an experimental system which features cellular polarity, for example, a tissue or organ. The suitability of C. elegans as a model organism to identify genes functioning in endocytosis has been demonstrated by previous genetic screens (Grant and Hirsh 1999; Fares and Greenwald, 2001). Offering excellent morphological resolution and polarization, the nematode intestine represents a good system to study the apical sorting of a transmembrane marker. The steady state localization of such a marker is likely the result of a dynamic process that depends on biosynthetic trafficking to the apical surface, apical endocytosis and recycling occurring through apical recycling endosomes. Therefore, mis-sorting of this marker upon RNA-mediated interference will be indicative of a failure in one of the aforementioned processes. Furthermore, since it is still largely unclear why apical endosomes maintain their polarized localization, this screen will also monitor the morphology of this endocytic compartment using a second marker. Following image acquisition based on an automated confocal microscope, data can be analyzed using custom-built software allowing objective phenotypic analysis. The successful establishment of the proof-of-principle marks the current state-of-the-art of this large-scale screening project.
6

Modulation of Cargo Transport and Sorting through Endosome Motility and Positioning

Höpfner, Sebastian 14 November 2005 (has links)
Utilizing various systems such as cell-based assays but also multicellular organisms such as Drosophila melanogaster and C.elegans, for example, the endocytic system has been shown to consist of a network of biochemically and morphologically distinct organelles that carry out specialized tasks in the uptake, recycling and catabolism of growth factors and nutrients, serving a plethora of key biological functions (Mellman, 1996). Different classes of endosomes were found to exhibit a characteristic intracellular steady state distribution. This distribution pattern observed at steady state results from a dynamic interaction of endosomes with the actin and the microtubule cytoskeleton. It remains unclear, however, which microtubule-based motors besides Dynein control the intracellular distribution and motility of early endosomes and how their function is integrated with the sorting and transport of cargo. The first part of this thesis research outlines the search for such motor. I describe the identification of KIF16B which functions as a novel endocytic motor protein. This molecular motor, a kinesin-3, transports early endosomes to the plus end of microtubules, in a process regulated by the small GTPase Rab5 and its effector, the phosphatidylinositol-3-OH kinase hVPS34. In vivo, KIF16B overexpression relocated early endosomes to the cell periphery and inhibited transport to the degradative pathway. Conversely, expression of dominant-negative mutants or ablation of KIF16B by RNAi caused the clustering of early endosomes to the peri-nuclear region, delayed receptor recycling to the plasma membrane and accelerated degradation. These results suggest that KIF16B, by regulating the plus end motility of early endosomes, modulates the intracellular localization of early endosomes and the balance between receptor recycling and degradation. In displaying Rab5 and PI(3)P-containing cargo selectivity, a remarkable property of KIF16B is that it is subjected to the same regulatory principles governing the membrane tethering and fusion machinery (Zerial and McBride, 2001). Since KIF16B can modulate growth factor degradation, we propose that this motor could have also important implications for signaling. Importantly, KIF16B has provided novel insight into how intracellular localization of endosomes governs the transport activity of these organelles. The second part of this thesis describes the proof-of-principle of a genome-wide screening strategy aimed at gaining insights into the next level of understanding: How the spatial distribution of organelles is linked to their function in an experimental system which features cellular polarity, for example, a tissue or organ. The suitability of C. elegans as a model organism to identify genes functioning in endocytosis has been demonstrated by previous genetic screens (Grant and Hirsh 1999; Fares and Greenwald, 2001). Offering excellent morphological resolution and polarization, the nematode intestine represents a good system to study the apical sorting of a transmembrane marker. The steady state localization of such a marker is likely the result of a dynamic process that depends on biosynthetic trafficking to the apical surface, apical endocytosis and recycling occurring through apical recycling endosomes. Therefore, mis-sorting of this marker upon RNA-mediated interference will be indicative of a failure in one of the aforementioned processes. Furthermore, since it is still largely unclear why apical endosomes maintain their polarized localization, this screen will also monitor the morphology of this endocytic compartment using a second marker. Following image acquisition based on an automated confocal microscope, data can be analyzed using custom-built software allowing objective phenotypic analysis. The successful establishment of the proof-of-principle marks the current state-of-the-art of this large-scale screening project.
7

Dynamics of Active Filament Systems / The Role of Filament Polymerization and Depolymerization / Dynamik aktiver Filament-Systeme

Zumdieck, Alexander 14 January 2006 (has links) (PDF)
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie &amp;quot;filament treadmilling&amp;quot;, also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln. / Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.
8

Dynamics of Active Filament Systems: The Role of Filament Polymerization and Depolymerization

Zumdieck, Alexander 16 December 2005 (has links)
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie &amp;quot;filament treadmilling&amp;quot;, also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln. / Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.
9

Dynamics of Cilia and Flagella / Bewegung von Zilien und Geißeln

Hilfinger, Andreas 14 January 2006 (has links) (PDF)
Cilia and flagella are hair-like appendages of eukaryotic cells. They are actively bending structures that exhibit regular beat patterns and thereby play an important role in many different circumstances where motion on a cellular level is required. Most dramatic is the effect of nodal cilia whose vortical motion leads to a fluid flow that is directly responsible for establishing the left-right axis during embryological development in many vertebrate species, but examples range from the propulsion of single cells, such as the swimming of sperm, to the transport of mucus along epithelial cells, e.g. in the ciliated trachea. Cilia and flagella contain an evolutionary highly conserved structure called the axoneme, whose characteristic architecture is based on a cylindrical arrangement of elastic filaments (microtubules). In the presence of a chemical fuel (ATP), molecular motors (dynein) exert shear forces between neighbouring microtubules, leading to a bending of the axoneme through structural constraints. We address the following two questions: How can these organelles generate regular oscillatory beat patterns in the absence of a biochemical signal regulating the activity of the force generating elements? And how can the beat patterns be so different for apparently very similar structures? We present a theoretical description of the axonemal structure as an actively bending elastic cylinder, and show that in such a system bending waves emerge from a non-oscillatory state via a dynamic instability. The corresponding beat patterns are solutions to a set of coupled partial differential equations presented herein.
10

Dynamics of Cilia and Flagella

Hilfinger, Andreas 07 February 2006 (has links)
Cilia and flagella are hair-like appendages of eukaryotic cells. They are actively bending structures that exhibit regular beat patterns and thereby play an important role in many different circumstances where motion on a cellular level is required. Most dramatic is the effect of nodal cilia whose vortical motion leads to a fluid flow that is directly responsible for establishing the left-right axis during embryological development in many vertebrate species, but examples range from the propulsion of single cells, such as the swimming of sperm, to the transport of mucus along epithelial cells, e.g. in the ciliated trachea. Cilia and flagella contain an evolutionary highly conserved structure called the axoneme, whose characteristic architecture is based on a cylindrical arrangement of elastic filaments (microtubules). In the presence of a chemical fuel (ATP), molecular motors (dynein) exert shear forces between neighbouring microtubules, leading to a bending of the axoneme through structural constraints. We address the following two questions: How can these organelles generate regular oscillatory beat patterns in the absence of a biochemical signal regulating the activity of the force generating elements? And how can the beat patterns be so different for apparently very similar structures? We present a theoretical description of the axonemal structure as an actively bending elastic cylinder, and show that in such a system bending waves emerge from a non-oscillatory state via a dynamic instability. The corresponding beat patterns are solutions to a set of coupled partial differential equations presented herein.

Page generated in 0.0831 seconds