• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 15
  • 12
  • 12
  • 10
  • 10
  • 7
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 171
  • 67
  • 19
  • 17
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Studies on Control of Stereo- and Regioselectivity in Conjugate Additions of Aldehydes Catalyzed by Axially Chiral Biaryl-Based Amines / 軸不斉ビアリール型アミン触媒によるアルデヒドの共役付加反応における立体及び位置選択性の制御に関する研究

Sugimoto, Hisashi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18814号 / 理博第4072号 / 新制||理||1586(附属図書館) / 31765 / 京都大学大学院理学研究科化学専攻 / (主査)教授 丸岡 啓二, 教授 大須賀 篤弘, 教授 時任 宣博 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
62

Role of silicon in improving drought tolerance in soybean

Li, Meng 10 August 2018 (has links)
Drought is a major environmental factor limiting crop productivity. Considering a significant area of crop production under water-limited rained conditions, there is a great need to develop production systems to sustain yield potentials under drought stress. Silicon has recently been recognized as an important element in plant nutrition. In this study, it was shown that supplying soybean with soluble silicon in the soil could improve vegetative growth and drought tolerance under water limiting conditions. In order to understand the molecular mechanism how silicon alleviates drought stress, the effects of silicon application on protein expression and antioxidant enzymes were examined. Soybean plants were grown in sand-containing pots supplied with 4 millimolar solutions of sodium silicate. To cancel the effect of sodium, the same amount of sodium chloride was used along with control plants. Soluble proteins were isolated from the leaves and roots of silicon-treated and control plants subjected to water deficit stress. Two-dimensional gel electrophoresis and mass spectrometry approaches were used to identify differentially expressed leaf and root proteins in response to silicon application under water deficit stress. Proteins that showed differential expression in response to silicon application included metabolic enzymes and proteins involved in the proteasome-dependent degradation pathway. These results indicate that silicon application could affect enzymes important for carbohydrate metabolism and stabilize aldehyde dehydrogenases and malic enzyme under water deficit stress, which may be attributable to drought tolerance.
63

Interaction of phthalazines with molybdenum hydroxylases. Phthalazine and its 1-substituted derivatives as substrates, inhibitors and inducers of aldehyde oxidase and xanthine oxidase, both in vitro and in vivo.

Johnson, Christine January 1983 (has links)
The interaction of the 2,3-diazanaphthalene, phthalazine and its 1-substituted derivatives with the molybdenum hydroxylases, aldehyde oxidase and xanthine oxidase, has been investigated both in vivo and /Ok in vitro. Metabolic studies, carried out by treating rabbits with both cold and 14C-labelled phthalazine, have shown that this compound is extensively metabolised in vivo, the major metabolite being a glucuronide conjugate. Very little unchanged phthalazine or its molybdenum hydroxylase mediated oxidation product 1-hydroxyphthalazine were excreted in the urine. Pretreatment of rabbits with phthalazine or 1-hydroxyphthalazine had no effect upon the activity of the microsomal monooxygenases but caused a significant increase in the specific activities of both aldehyde oxidase and xanthine oxidase. Determination of the molybdenum content of purified aldehyde oxidase fractions using electrothermal atomic absorption spectroscopy has confirmed that an increase in the molybdenum content of the enzyme fraction accompanies the increase in activity. A qualitative assessment of purified aldehyde oxidase fractions using iso-electric focusing has indicated that this enzyme may be composed of 2 or 3 active variants and following pretreatment with either phthalazine or 1-hydroxyphthalazine a further band of enzyme activity is apparent on the electropherogram. The Km value for phthalazine is significantly reduced with enzyme prepared from phthalazine treated rabbits, indicating that a form of the enzyme with a high affinity for phthalazine may have been induced. 1-Hydrazinophthalazine (Hydralazine) and two other hydrazine substituted N-heterocycles, endralazine and 1-hydrazinoisoquinoline have been shown to exert a potent progressive inhibition of aldehyde oxidase in vitro, effective only in the presence of substrate, but are inactive towards xanthine oxidase. In addition, administration of hydralazine to rabbits results in a significant reduction in liver aldehyde oxidase activity. Investigations into the interaction of some of the metabolites of hydralazine with aldehyde oxidase in vitro suggest that hydralazine is also the inhibiting species in vivo. / The Ransom Fellowship awarded by The Pharmaceutical Society of Great Britain,
64

Specificity of aldehyde oxidase towards N-heterocyclic cations. Oxidation of quinolinium and related cations by aldehyde oxidase in vitro; the isolation of two products formed simultaneously from a single substrate.

Taylor, Susan M. January 1984 (has links)
Aldehyde oxidase catalysed oxidation of various quinolinium and related cations has been studied in vitro. Oxidation products were identified by comparison of their spectral and chromatographic characteristics with those of authentic compounds. The N-heterocyclic cations and quinolones used required synthesis. Incubation of N-methylquinolinium, N-methyl-7,8-benzoquinolinium and N-phenylquinolinium yielded the corresponding 2- and 4-quinolones simultaneously. The ratio of 2- to 4-quinolone formation was found to be species dependent; the proportion of 4-quinolone was greater with guinea pig enzyme than with rabbit enzyme. Incubation of N-methyl-4-methylquinolinium, N-methyl-4-phenylquinolinium and N-methylphenanthridinium produced the expected 2-quinolones. Cations substituted adjacent to the ring nitrogen, i. e. N-methyl-2- methylquinolinium, N-methyl-2-phenylquinolinium and N-phenyl-2-phenylquinolinium, were oxidised to the corresponding 4-quinolones. Kinetic constants were determined spectrophotometrically. The Km values obtained with rabbit enzyme ranged from 1.6 x 10-3 M for N-methylquinolinium to <10-5 M for N-phenyl-2-phenylquinolinium. Quaternary compounds were found to be better substrates than their non-quaternary counterparts, except for N-methylisoquinolinium and N-methylphenanthridinium. In general, guinea pig aldehyde oxidase was shown to have a greater affinity for N-heterocyclic cations than rabbit enzyme. The substrate binding site has been discussed in the light of the results outlined below. Oxidation of N-methyl-4-phenylquinolinium (to the 2-quinolone) was competitively inhibited by N-methyl-2-phenylquinolinium (which yields the 4-quinolone), indicating that both these cations interact at the same active site. The ratio of 2- to 4-quinolone production from N-methylquinolinium was constant under various conditions, including purification of the enzyme but changed at high pH or in the presence of N-methylphenanthridinium. Inhibition studies indicated that both quaternary and non-quaternary compounds act at the same site on the enzyme. Km and Vmax values for phthalazine, N-methyl-2-phenylquinolinium and N-methylquinolinium were determined over the pH range 5.4 to 10.2. In each case, results indicated that the enzyme has an ionisable group at the active site with a pK ca. 8. Aldehyde oxidase was shown to catalyse the dehydrogenation of the pseudobases 3,4-dihydro-4-hydroxy-3-methyl-2-quinazolinone and 3,4-dihydro- 4-hydroxy-3-methylquinazoline.
65

The Light Sensitivity of some Nitrogen-containing Furfural Derivatives

Tittle, Charles William 06 1900 (has links)
This study describes the creation of various furfural derivatives and their respective light sensitivity.
66

Metabolism of isovanillin by aldehyde oxidase, xanthine oxidase, aldehyde dehydrogenase and liver slices.

Panoutsopoulos, Georgios I., Beedham, Christine January 2005 (has links)
No / Aromatic aldehydes are good substrates of aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. However, the oxidation of xenobiotic-derived aromatic aldehydes by thelatter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase and xanthine oxidase activities in the oxidation of isovanillin in separate preparations and also in freshly prepared and cryopreserved liver slices. The oxidation of isovanillin was also examined in the presence of specific inhibitors of each oxidizing enzyme. Minimal transformation of isovanillin to isovanillic acid was observed in partially purified aldehyde oxidase, which is thought to be due to residual xanthine oxidase activity. Isovanillin was rapidly metabolized to isovanillic acid by high amounts of purified xanthine oxidase, but only low amounts are present in guinea pig liver fraction. Thus the contribution of xanthine oxidase to isovanillin oxidation in guinea pig is very low. In contrast, isovanillin was rapidly catalyzed to isovanillic acid by guinea pig liver aldehyde dehydrogenase activity. The inhibitor studies revealed that isovanillin was predominantly metabolized by aldehyde dehydrogenase activity. The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared or cryopreserved liver slices has not been previously reported. In freshly prepared liver slices, isovanillin was rapidly converted to isovanillic acid, whereas the conversion was very slow in cryopreserved liver slices due to low aldehyde dehydrogenase activity. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. It is therefore concluded that isovanillin is predominantly metabolized by aldehyde dehydrogenase activity, with minimal contribution from either aldehyde oxidase or xanthine oxidase.
67

Engineering of poly (2-oxazoline)s for potential use in biomedical applications / Ingénierie des poly(2-oxazoline)s pour un usage dans le domaine du biomédical

Legros, Camille 31 October 2014 (has links)
Ce travail décrit d'abord l’élaboration de nanogels hydrophiles stimulables, sensibles à un changement de pH et à un environnement où les propriétés d’oxydo-réduction peuvent varier. Ils ont été synthétisés en milieu dilué, d’une part, et en émulsion inverse, d’autre part; dans les deux cas à partir d’un copolymère statistique composé d’unités 2-éthyl-2-oxazoline et éthylène imine. Ces nanogels n’ont pas montré d’interactions spécifiques avec des protéines telles que la BSA et se sont avérés non-toxiques in vitro. Une plateforme à base d’un copolymère POx statistique porteur de fonctions aldéhydes a par ailleurs permis d’accéder à une librairie de POx, incluant des structures greffées et réticulées. Enfin, l’autoassemblage en solution d’un copolymère à blocs de type poly(2-methyl-oxazoline)-bpoly(2-isopropyl-2-oxazoline) (PMeOx-b-PiPrOx), a été étudié en détail. Des micelles ont été observées à des temps courts au-dessus du point trouble du PiPrOx. Pour des temps plus longs, la formation de fibres et de micelles réticulées physiquement ont été mise en évidence, comportement expliqué par la cristallisation des chainesde PiPrOx stabilisées par les blocs PMeOx hydrophiles. / This PhD work is based on the design of poly(2-oxazoline) (POx)hydrogels and nanogels, by chemical or physical cross-linking, aimed to be used for biomedical applications. Nanogels were first prepared in dilute media and in inverse emulsion based on a statistical copolymer made of 2-ethyl-2-oxazoline and ethyleneimine units. These stimuli-responsive nanogels were swelling in acidic media and were cleaved in reductive environment. They proved to be non-cytotoxic and act as protein repellent. Second, a reactive platform based on a statistical POx polymerbearing aldehyde functionalities was engineered, enabling the synthesis of graft and cross-linked POx. Last, a block copolymer made of 2-methyl- and 2-isopropyl-2-oxazoline units, proved to self-assemble into micelles when heated above its LCST,for a short period of time (< 1h30). When annealed for a longer time (> 1h30),crystallization-driven self-assembly led to the formation of different morphologies(fiber rods and cross-linked micelles).
68

Identification of the gene responsible for fragrance in rice and characterisation of the enzyme transcribed from this gene and its homologs

Bradbury, Louis MT Unknown Date (has links)
The flavour or fragrance of Basmati rice is associated with the presence of 2-acetyl-1- pyrroline. This work shows that a gene with homology to betaine aldehyde dehydrogenase (BAD) has significant polymorphisms in the coding region of fragrant genotypes relative to non fragrant genotypes. Accumulation of 2-acetyl-1-pyrroline in fragrant rice genotypes may be explained by the presence of mutations resulting in loss of function of the fgr gene product. The fgr gene corresponds to the gene encoding BAD2 in rice while BAD1 is encoded by a gene on chromosome 4. Development of an allele specific amplification (ASA) based around the deletion in the gene encoding BAD2 allows, perfect, simple and low cost discrimination between fragrant and non-fragrant rice varieties and identifies homozygous fragrant, homozygous non-fragrant and heterozygous non-fragrant individuals in a population segregating for fragrance. The cDNAs transcribed from rice chromosomes 4 and 8, each encoding an enzyme with homology to betaine aldehyde dehydrogenase were cloned and expressed in E. coli. The enzyme responsible for fragrance, encoded from chromosome 8, had optimum activity at pH 10, showed low affinity towards betaine aldehyde (bet-ald) with Km value of approximately 63ìM but a higher affinity towards -aminobutyraldehyde (GABald) with a Km value of approximately 9ìM. The enzyme encoded from chromosome 4 had optimum activity at pH 9.5 and showed generally lower affinity towards most substrates compared to the enzyme encoded from chromosome 8, substrate specificities suggest that the enzymes have higher specificity to aminoaldehydes and as such both should be renamed as an aminoaldehyde dehydrogenase (AAD). The inactivation of AAD2 (BAD2) in fragrant rice varieties likely leads to accumulation of its main substrate GABald which then cyclises to 1-pyrroline the immediate precursor of 2AP.
69

Identification of the gene responsible for fragrance in rice and characterisation of the enzyme transcribed from this gene and its homologs

Bradbury, Louis MT Unknown Date (has links)
The flavour or fragrance of Basmati rice is associated with the presence of 2-acetyl-1- pyrroline. This work shows that a gene with homology to betaine aldehyde dehydrogenase (BAD) has significant polymorphisms in the coding region of fragrant genotypes relative to non fragrant genotypes. Accumulation of 2-acetyl-1-pyrroline in fragrant rice genotypes may be explained by the presence of mutations resulting in loss of function of the fgr gene product. The fgr gene corresponds to the gene encoding BAD2 in rice while BAD1 is encoded by a gene on chromosome 4. Development of an allele specific amplification (ASA) based around the deletion in the gene encoding BAD2 allows, perfect, simple and low cost discrimination between fragrant and non-fragrant rice varieties and identifies homozygous fragrant, homozygous non-fragrant and heterozygous non-fragrant individuals in a population segregating for fragrance. The cDNAs transcribed from rice chromosomes 4 and 8, each encoding an enzyme with homology to betaine aldehyde dehydrogenase were cloned and expressed in E. coli. The enzyme responsible for fragrance, encoded from chromosome 8, had optimum activity at pH 10, showed low affinity towards betaine aldehyde (bet-ald) with Km value of approximately 63ìM but a higher affinity towards -aminobutyraldehyde (GABald) with a Km value of approximately 9ìM. The enzyme encoded from chromosome 4 had optimum activity at pH 9.5 and showed generally lower affinity towards most substrates compared to the enzyme encoded from chromosome 8, substrate specificities suggest that the enzymes have higher specificity to aminoaldehydes and as such both should be renamed as an aminoaldehyde dehydrogenase (AAD). The inactivation of AAD2 (BAD2) in fragrant rice varieties likely leads to accumulation of its main substrate GABald which then cyclises to 1-pyrroline the immediate precursor of 2AP.
70

Characterization of Leukemic stem cells in acute myeloid Leukemia

Cheung, Man-sze, 張敏思. January 2008 (has links)
published_or_final_version / Medicine / Doctoral / Doctor of Philosophy

Page generated in 0.0422 seconds