81 |
Separation of variables and new quantum integrable systems with boundaries / Séparation des variables et nouveaux systèmes intégrables quantiques avec bordsPezelier, Baptiste 01 June 2018 (has links)
Les principaux outils pour la compréhension du comportement macroscopique desystèmes quantiques à partir de leur description microscopique sont la déterminationdu spectre du Hamiltonien associé et le calcul des fonctions de corrélation. Cettethèse se place dans le cadre du développement d’un tel programme de recherche afind’étudier des systèmes intégrables quantiques avec des conditions aux bordsintégrables générales, le but à long terme étant la description exacte d’une physiquequantique hors équilibre.Plus spécifiquement, nous avons analysé la classe des systèmes intégrablesquantiques sur réseau associés aux représentations cycliques de l’algèbre de réflexionà 6-vertex, avec comme exemples les modèles de sine Gordon et de Potts chiral avecconditions aux bords intégrables.Une large partie du travail a été consacrée au développement de la méthode deséparation quantique des variables pour résoudre le problème spectral de la matricede transfert de ces modèles avec conditions de bords intégrables les plus générales,en étendant l’idée des transformations de jauge de Baxter à ces algèbres de réflexion.Nous avons caractérisé complètement le spectre de la matrice de transfert (valeurspropres et vecteurs propres) en termes des solutions d’un système discret d’équationspolynomiales et d’une façon équivalente en termes des solutions, dans une certaineclasse de fonctions, d’une équation de type Baxter fonctionnelle. Cela permet de fairele lien dans certains cas particuliers avec la méthode de l’anstaz de Bethe algébriquequi ne permet pas d’étudier ces modèles en toute généralité.Nous avons ensuite construit des familles de nouveaux Hamiltoniens locaux avecconditions aux bords intégrables qui commutent avec la matrice de transfert. Pour cefaire nous avons défini une hiérarchie de nouvelles équations de réflexion mélangeantdifférentes représentations de l’algèbre quantique à 6-vertex et utilisant entre autres,la matrice R fondamentale cyclique. / The main theoretical tools to understand the macroscopic behaviour of quantumsystems from their microscopic description are the determination of theirHamiltonian spectrum and the computation of their correlation functions. This thesistakes place in the development of such a research program to study quantumintegrable models with general integrable boundary conditions, the long-range goalbeing to be able to exactly describe out of equilibrium physics.More specifically, we have analysed the class of integrable quantum models on thelattice associated to cyclic representations of the 6-vertex reflection algebra,including as particular cases the lattice sine- Gordon model at root of unity and thechiral Potts model with general integrable boundaries.A large part of the work has been devoted to the development of the quantumseparation of variables method to solve the spectral problem for these models withgeneral integrable boundary conditions, by generalising the Baxter’s gaugetransformations to these cyclic reflection algebras.We have completely characterised the transfer matrix spectrum (both eigenvaluesand eigenstates) in terms of the set of solutions to a discrete system of polynomialequations and equivalently as the set of solutions, in a given class of functions, to aBaxter like functional equation. This last point allows in particular cases to make alink with the Algebraic Bethe Ansatz approach, which in general, cannot be used forthe study of these models.We have then constructed families of new local Hamiltonians with integrableboundaries commuting with the above transfer matrix. To that end, we have defined ahierarchy of new mixed reflection equations, involving different representations ofthe 6-vertex algebra and using, among others, the fundamental R-matrix.
|
82 |
Bases de monômes dans les algèbres pré-Lie libres et applications / Monomial bases for free pre-Lie algebras and applicationsAl-Kaabi, Mahdi Jasim Hasan 28 September 2015 (has links)
Dans cette thèse, nous étudions le concept d’algèbre pré-Lie libre engendrée par un ensemble (non-vide). Nous rappelons la construction par A. Agrachev et R. Gamkrelidze des bases de monômes dans les algèbres pré-Lie libres. Nous décrivons la matrice des vecteurs d’une base de monômes en termes de la base d’arbres enracinés exposée par F. Chapoton et M. Livernet. Nous montrons que cette matrice est unipotente et trouvons une expression explicite pour les coefficients de cette matrice, en adaptant une procédure suggérée par K. Ebrahimi-Fard et D. Manchon pour l’algèbre magmatique libre. Nous construisons une structure d’algèbre pré-Lie sur l’algèbre de Lie libre $\mathcal{L}$(E) engendrée par un ensemble E, donnant une présentation explicite de $\mathcal{L}$(E) comme quotient de l’algèbre pré-Lie libre $\mathcal{T}$^E, engendrée par les arbres enracinés (non-planaires) E-décorés, par un certain idéal I. Nous étudions les bases de Gröbner pour les algèbres de Lie libres dans une présentation à l’aide d’arbres. Nous décomposons la base d’arbres enracinés planaires E-décorés en deux parties O(J) et $\mathcal{T}$(J), où J est l’idéal définissant $\mathcal{L}$(E) comme quotient de l’algèbre magmatique libre engendrée par E. Ici, $\mathcal{T}$(J) est l’ensemble des termes maximaux des éléments de J, et son complément O(J) définit alors une base de $\mathcal{L}$(E). Nous obtenons un des résultats importants de cette thèse (Théorème 3.12) sur la description de l’ensemble O(J) en termes d’arbres. Nous décrivons des bases de monômes pour l’algèbre pré-Lie (respectivement l’algèbre de Lie libre) $\mathcal{L}$(E), en utilisant les procédures de bases de Gröbner et la base de monômes pour l’algèbre pré-Lie libre obtenue dans le Chapitre 2. Enfin, nous étudions les développements de Magnus classique et pré-Lie, discutant comment nous pouvons trouver une formule de récurrence pour le cas pré-Lie qui intègre déjà l’identité pré-Lie. Nous donnons une vision combinatoire d’une méthode numérique proposée par S. Blanes, F. Casas, et J. Ros, sur une écriture du développement de Magnus classique, utilisant la structure pré-Lie de $\mathcal{L}$(E). / In this thesis, we study the concept of free pre-Lie algebra generated by a (non-empty) set. We review the construction by A. Agrachev and R. Gamkrelidze of monomial bases in free pre-Lie algebras. We describe the matrix of the monomial basis vectors in terms of the rooted trees basis exhibited by F. Chapoton and M. Livernet. Also, we show that this matrix is unipotent and we find an explicit expression for its coefficients, adapting a procedure implemented for the free magmatic algebra by K. Ebrahimi-Fard and D. Manchon. We construct a pre-Lie structure on the free Lie algebra $\mathcal{L}$(E) generated by a set E, giving an explicit presentation of $\mathcal{L}$(E) as the quotient of the free pre-Lie algebra $\mathcal{T}$^E, generated by the (non-planar) E-decorated rooted trees, by some ideal I. We study the Gröbner bases for free Lie algebras in tree version. We split the basis of E- decorated planar rooted trees into two parts O(J) and $\mathcal{T}$(J), where J is the ideal defining $\mathcal{L}$(E) as a quotient of the free magmatic algebra generated by E. Here $\mathcal{T}$(J) is the set of maximal terms of elements of J, and its complement O(J) then defines a basis of $\mathcal{L}$(E). We get one of the important results in this thesis (Theorem 3.12), on the description of the set O(J) in terms of trees. We describe monomial bases for the pre-Lie (respectively free Lie) algebra $\mathcal{L}$(E), using the procedure of Gröbner bases and the monomial basis for the free pre-Lie algebra obtained in Chapter 2. Finally, we study the so-called classical and pre-Lie Magnus expansions, discussing how we can find a recursion for the pre-Lie case which already incorporates the pre-Lie identity. We give a combinatorial vision of a numerical method proposed by S. Blanes, F. Casas, and J. Ros, on a writing of the classical Magnus expansion in $\mathcal{L}$(E), using the pre-Lie structure.
|
83 |
Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie / Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebrasBou Daher, Rabih 27 June 2017 (has links)
Dans cette thèse, nous décrivons explicitement la structure multiplicative et la structure d’algèbre de Lie graduée sur la cohomologie de l’algèbre enveloppante d’une algèbre de Lie de dimension finie. Dans un premier temps, nous introduisons une structure multiplicative de la cohomologie de l’algèbre de Lie. Ensuite, nous montrons explicitement qu’il existe un isomorphisme d’algèbres graduées commutatives entre l’algèbre de cohomologie de Hochschild de l’algèbre enveloppante munie du produit cup et l’algèbre de cohomologie de l’algèbre de Lie. Dans un deuxième temps, nous introduisons une structure d’algèbre de Lie graduée sur la cohomologie de l’algèbre de Lie. Ensuite, nous montrons qu’il existe un isomorphisme d’algèbres de Lie graduées entre l’algèbre de Lie de cohomologie de Hochschild de l’algèbre enveloppante munie du crochet de Gerstenhaber et l’algèbre de cohomologie de l’algèbre de Lie. Enfin, nous décrivons complètement le crochet de Gerstenhaber sur la cohomologie de Hochschild de l’algèbre enveloppante d’une algèbre de Lie de dimension _ 3. / In this thesis, we explicitly describe the multiplicative structure and the graded Lie algebra structure of the cohomology of finite-dimensional Lie algebras. In a first step, we introduce a multiplicative structure for the cohomology of Lie algebra. Then, we explicitly show that there exists an isomorphism of commutative graded algebras between the Hochschild cohomology algebra of the enveloping algebra provided with the cup product and the cohomology algebra of the Lie algebra. In a second step, we introduce a graded Lie algebra structure for the cohomology of Lie algebra. Then, we show that there exists an isomorphism of graded Lie algebras between the Hochschild cohomology Lie algebra of the enveloping algebra provided with the Gerstenhaber bracket and the cohomology algebra of the Lie algebra. Finally, we describe completely the Gerstenhaber bracket on the Hochschild cohomology of the enveloping algebra of a Lie algebra for dimension _ 3.
|
84 |
Les fibrations de Grothendieck et l’algèbre homotopique / Grothendieck fibrations and homotopical algebraBalzin, Eduard 20 June 2016 (has links)
Cette thèse est consacrée à l'étude des familles de catégories munies d'une structure homotopique. Les résultats principaux compris dans cette oeuvre sont : i. Une généralisation de la structure de modèles de Reedy, qui dans ce travail est construite pour les sections d'une famille convenable des catégories de modèles sur une catégorie de Reedy. À la différence des considérations précédentes, par exemple celles de Hirschowitz-Simpson, nous exigeons aussi peu de propriétés de la famille que possible, pour que notre résultat puisse être appliqué dans les situations où les foncteurs de transition ne sont pas linéaires. ii. Une extension du formalisme de Segal pour les structures algébriques, dans le territoire des catégories monoïdales sur une catégorie d'opérateurs au sens de Barwick. Pour ce faire, nous présentons les structures monoidales comme certaines opfibrations de Grotendieck, et introduisons les sections dérivées des opfibrations en utilisant les remplacements simpliciaux de Bousfield-Kan. Notre résultat concernant la structure de Reedy nous permet alors de travailler avec les sections dérivées. iii. Une preuve d'un certain résultat de la descente homotopique, qui donne des conditions suffisantes pour que le foncteur d'image inverse soit une équivalence entre catégories de sections dérivées au sens adapté. L'on montre ce résultat pour les foncteurs qui satisfont une propriété technique du genre ``Théorème A de Quillen'', les foncteurs que nous appelons résolutions. Un exemple d'une résolution est donné par un foncteur de la catégorie des arbres planaires stables de Kontsevich-Soibelman, au groupoïde fondamental stratifié de l'espace de Ran du $2$-disque / This thesis is devoted to the study of families of categories equipped with a homotopical structure. The principal results comprising this work are:i. A generalisation of the Reedy model structure, which, in this work, is constructed for sections of a suitable family of model categories over a Reedy category. Unlike previous considerations, such as Hirschowitz-Simpson, we require as little as possible from the family, so that our result may be applied in situations when the transition functors in the family are non-linear in nature. ii. An extension of Segal formalism for algebraic structures to the setting of monoidal categories over an operator category in the sense of Barwick. We do this by treating monoidal structures using the language of Grothendieck opfibrations, and introduce derived sections of the latter using the simplicial replacements of Bousfield-Kan. Our Reedy structure result then permits to work with derived sections. iii. A proof of a certain homotopy descent result, which gives sufficient conditions on when an inverse image functor is an equivalence between suitable categories of derived sections. We show this result for functors which satisfy a technical ``Quillen Theorem A''-type property, called resolutions. One example of a resolution is given by a functor from the category of planar marked trees of Kontsevich-Soibelman, to the stratified fundamental groupoid of the Ran space of the $2$-disc. An application of the homotopy descent result to this functor gives us a new proof of Deligne conjecture, providing an alternative to the use of operads
|
85 |
Equivalence singulière à la Morita et la cohomologie de Hochschild singulière / Singular equivalence of Morita type and singular Hochschild cohomologyWang, Zhengfang 07 December 2016 (has links)
L’objet de cette thèse est l’étude des catégories singulières des k-algèbres associatives surun anneau commutatif k. On développe la théorie de Morita pour les catégories singulières. Plus précisément, on propose une définition d’équivalence singulière à la Morita avec niveau, qui généralise la notion d’équivalence stable à la Morita introduite par Michel Broué. On montre qu’une équivalence dérivée de type standard induit une équivalence singulière à la Morita avec niveau. La deuxième partie de cette thèse est l’étude de la cohomologie de Hochschild singulière HH_sg(A,A) c’est-à-dire, l’espace des morphismes de A vers A[i] dans la catégorie singulière Dsg(A Aop) pour tous les nombres entiers i. Similaire à la cohomologie de Hochschild HH_(A,A), on montre que la cohomologie de Hochschild singulière HH_sg(A,A) est une algèbre de Gerstenhaber et donne une interprétation pour le crochet de Lie sur HH_sg(A,A) du point de vue de la théorie de PROP. On peut associer un complexe de cochaînes, qu’on appelle complexe de cochaînes de Hochschild singulières, C_sg(A,A) qui calcule la cohomologie de Hochschild singulière HH_sg(A,A). Alors on étudie une structure algébrique supérieure (e.g. l’algèbre de B1) sur C_sg(A,A) et propose une version singulière d’une conjecture de Deligne. L’objet de la troisième partie de cette thèse est de montrer que la structure d’algèbre de Gerstenhaber sur la cohomologie de Hochschild singulière est invariante par équivalences dérivées et équivalences singulières à la Morita avec niveau. L’idée de cette démonstration est analogue à l’approche développée par Keller lorsqu’il démontre que la structure d’algèbre de Gerstenhaber sur la cohomologie de Hochschild est invariante par équivalences dérivées. Similaire à la démonstration par Keller, on réalise HH_sg(A,A) avec le crochet de Lie comme une algèbre de Lie graduée du groupe algébrique gradué associé au groupe de Picard singulière sgDPic(A). / In this thesis, we are concerned with some aspects of singular categories of unitalassociative k-algebras over a commutative ring k. First, we develop a Morita theory for singular categories. Analogous to the classical Morita theory, we propose a definition of singular equivalence of Morita type with level. This follows and generalizes a definition of stable equivalence of Morita type introduced by Michel Broué. A derived equivalence of standard type induces a singular equivalence of Morita type with level. Second, we study the Hom-space from A to A[i] in the singular category Dsg(AkAop) of the enveloping algebra AkAop, where A is an associative k-projective k-algebra and i is any integer. Recall that the i-th Hochschild cohomology group HHi(A,A) can be realized as the Hom-space from A to A[i] in the bounded derived category Db(A k Aop). From this motivation, we call HomDsg(AkAop)(A,A[i]) the i-th singular Hochschild cohomology group and denote this group by HHi sg(A,A). Analogous to the Hochschild cohomology ring HH_(A,A), we prove that there is a Gerstenhaber algebra structure on the singular Hochschild ring HH_sg(A,A) and provide an interpretation of the Lie bracket from the point of view of PROP theory. We also associate a cochain complex, which we call singular Hochschild cochain complex, C_sg(A,A) to the singular Hochschild cohomology. Thenwe study the higher algebraic structures (e.g. B1-algebra) on C_sg(A,A) and propose asingular version of the Deligne conjecture. Following Keller’s approach which was developed for derived equivalences, we establish the invariance of the Gerstenhaber algebra structure which we defined on the singular Hochschild cohomology under singular equivalence of Morita type with level. In this proof, we define the singular derived Picard group sgDPic(A) of an associative algebra A and develop what we call a singular infinitesimal deformation theory. Then we realize HH_sg(A,A) as the graded Lie algebra of the ‘graded algebraic group’ associated to sgDPic(A).
|
86 |
Théories homotopiques des algèbres unitaires et des opérades / Homotopy theories of unital algebras and operadsLe Grignou, Brice 14 September 2016 (has links)
Dans cette thèse, nous nous intéressons aux propriétés homotopiques des algèbres sur une opérade, desopérades elles-mêmes et des opérades colorées, dans le monde des complexes de chaînes. Nousintroduisons une nouvelle adjonction bar-cobar entre les opérades unitaires et les coopéradesconilpotentes courbées. Ceci nous permet de munir ces dernières d'une structure de modèles induite parla structure projective des opérades le long de cette adjonction, qui devient alors une équivalence deQuillen. Ce résultat permet de passer, sans perte d'information homotopique, dans le monde descoopérades qui est plus puissant : on peut y décrire, par exemple, les objets fibrants-cofibrants en termesd'opérades à homotopie près. Nous appliquons ensuite la même stratégie aux algèbres sur une opérade.Pour cela, on munit la catégorie des cogèbres sur la coopérade duale de Koszul d'une structure demodèles induite par celle de la catégorie des algèbres d'origine le long de leur adjonction bar-cobar, quidevient une équivalence de Quillen. Cela nous permet de décrire explicitement pour la première fois despropriétés homotopique des algèbres sur une opérade non nécessairement augmentée. Dans unedernière partie, nous introduisons la notion d'opérade colorée à homotopie près que nous arrivons àcomparer aux infinies-opérades de Moerdijk--Weiss au moyen d'un foncteur : le nerf dendroidal. Nousmontrons qu'il étend des constructions dues à Lurie et à Faonte et nous étudions ses propriétéshomotopiques. En particulier, sa restriction aux opérades colorées est un foncteur de Quillen à droite.Tout ceci permet de relier explicitement deux mondes des opérades supérieures / This thesis deals with the homotopical properties of algebras over an operad, of operads themselves andof colored operads, in the framework of chain complexes. We introduce a new bar-cobar adjunctionbetween unital operads and curved conilpotent cooperads. This allows us to endow the latter with aDépôt de thèseDonnées complémentairesmodel structure induced by the projective model structure on operads along this adjunction, which thenbecomes a Quillen-equivalence. This result allows us to study the homotopy theory of operads in theworld of cooperads which is more powerful: for instance, fibrant-cofibrant objects can be described interms of operads up to homotopy. We then apply the same strategy to algebras over an operad. Morespecifically, we endow the category of coalgebras over the Koszul dual cooperad with a model structureinduced by that of the category of algebras along their bar-cobar adjunction, which becomes a Quillenequivalence.This allows us to describe explicitly for the first time some homotopy properties of algebrasover a not necessarily augmented operad. In the last part, we introduce the notion of homotopy coloredoperad that we compare to Moerdijk--Weiss' infinity-operads by means of a functor: the dendroidalnerve. We show that it extends existing constructions due to Lurie and Faonte and we study itshomotopical properties. In particular, we show that its restriction to colored operads is a right Quillenfunctor. All this allows us to connect explicitly two different worlds of higher operads
|
87 |
Calcul de la puissance annulatrice du radical à partir du carquois ordinaireHenry, Marion January 2015 (has links)
Dans ce mémoire, on commence par introduire le radical de la catégorie mod A pour une algèbre donnée A de dimension finie sur un corps algébriquement clos, avant d'en définir la puissance annulatrice dans le cas où A est de représentation finie. On calcule ensuite cette puissance annulatrice en fonction du nombre de cordes dans le carquois ordinaire Q_A, dans le cas où A est une algèbre inclinée itérée de type A.
|
88 |
Lemmes de zéros et relations fonctionnellesZorin, Evgeniy 30 September 2009 (has links) (PDF)
La thèse est consacrée aux estimations de multiplicité. Ce type de résultats est utilisé en théorie de la transcendance. A partir des travaux de A. B. Shidlovskii, W.D.Brownawell et D.W.Masser il sont régulièrement utilisés dans les preuves de transcendance et surtout d'indépendance algébrique. Par exemple, la démonstration du lemme de multiplicité est un élément très important de la preuve par Yu. Nesterenko du résultat sur l'indépendance algébrique des valeurs des fonctions de Ramanujan. Un autre résultat de ce type est une preuve par K.Nishioka d'une conjecture de K.Mahler. Ce lemme de multiplicité a permis de démontrer beaucoup de résultats concernant la transcendance des séries liées aux suites récurrentes et des suites engendrées par des automates finis. Le but de ce mémoire est l'étude approfondie, dans un cadre général, des lemmes de multiplicité conduisant à des améliorations de résultats d'indépendance algébrique connus. Le théorème principal de ce travail réduit la preuve des estimations de multiplicité à l'étude des idéaux stables sous une transformation algébrique. En particulier, ce théorème permet d'améliorer un peu le résultat de Yu.Nesterenko concernant les solutions de système d'équations différentielles. Dans le même temps ce théorème donne, sous une condition concernant des variétés stables, l'estimation avec l'exposant le meilleur possible dans le cas de solutions d'équations fonctionnelles. Ce dernier résultat conduit à l'étude des variétés irréductibles stables sous une transformation rationnelle, ceci semble d'être un sujet intéressant en soi.
|
89 |
Un développement algébrique de l'algorithme d'exclusion et quelques problèmes géométriques en algèbre de BooleLaborde, Jean-Marie 27 January 1977 (has links) (PDF)
.
|
90 |
Contribution des structures algébriques ordonnées à la théorie des réseauxBenzaken, Claude 04 March 1968 (has links) (PDF)
.
|
Page generated in 0.031 seconds