Spelling suggestions: "subject:"algebraic"" "subject:"algebraica""
41 |
Enumerative geometry of double spin curvesSertöz, Emre Can 11 October 2017 (has links)
Diese Dissertation hat zwei Teile. Im ersten Teil untersuchen wir die Modulräume von Kurven mit multiplen Spinstrukturen. Wir stellen eine neue Kompaktifizierung dieser Räume mit geometrisch sinnvollem Grenzverhalten vor. Die irreduziblen Komponenten dieser Räume werden vollstandig klassifiziert. Die Ergebnisse aus diesem ersten Teil der Dissertation sind fundamental für die Degenerationstechniken im zweiten Teil.
Im zweiten Teil untersuchen wir eine Reihe von Problemen, die von der klassischen Geometrie inspiriert werden. Unser Hauptaugenmerk liegt hierbei auf dem Fall von zwei Hyperebenen, die eine kanonische Kurve in jedem Schnittpunkt tangential berühren. Wir fragen, ob eingemensamer Tangentialpunk existieren kann. Unsere Analyse zeigt, dass so ein gemeinsamer Punkt nur in Kodimension 1 im Modulraum existieren kann. Wir berechen dann weiter die Klasse dieses Divisors.
Insbesonders zeigen wir, dass diese Klasse eine hinreichend kleine Steigung hat, sodass die kanonischen Klassen von Modulräumen von Kurven mit zwei ungeraden Spinstrukturen gross ist, wenn der Genus grösser ist als neun. Falls die zugehörigen groben Modulräume gutartige Singularitäten haben, dann haben sie in diesem Intervall maximale Kodaria Dimension. / This thesis has two parts. In Part I we consider the moduli spaces of curves with multiple spin structures and provide a compactification using geometrically meaningful limiting objects. We later give a complete classification of the irreducible components of these spaces. The moduli spaces built in this part provide the basis for the degeneration techniques required in the second part.
In the second part we consider a series of problems inspired by projective geometry. Given two hyperplanes tangential to a canonical curve at every point of intersection, we ask if there can be a common point of tangency. We show that such a common point can appear only in codimension 1 in moduli and proceed to compute the class of this divisor. We then study the general properties of curves in this divisor.
Our divisor class has small enough slope to imply that the canonical class of the moduli space of curves with two odd spin structures is big when the genus is greater than 9. If the corresponding coarse moduli spaces have mild enough singularities, then they have maximal Kodaira dimension in this range.
|
42 |
Positivstellensätze for the Weyl AlgebraZimmermann, Konrad 01 April 2016 (has links) (PDF)
We prove a strict positivstellensatz for Weyl algebra elements fulfilling an additional, asymptotic strict positivity condition. As a tool we develop a non-commutative analogue to the Newton polytope.
|
43 |
A Multi-Grid Method for Generalized Lyapunov EquationsPenzl, Thilo 07 September 2005 (has links) (PDF)
We present a multi-grid method for a class of
structured generalized Lyapunov matrix equations.
Such equations need to be solved in each step of
the Newton method for algebraic Riccati equations,
which arise from linear-quadratic optimal control
problems governed by partial differential equations.
We prove the rate of convergence of the two-grid
method to be bounded independent of the dimension
of the problem under certain assumptions.
The multi-grid method is based on matrix-matrix
multiplications and thus it offers a great
potential for a parallelization. The efficiency
of the method is demonstrated by numerical
experiments.
|
44 |
DGRSVX and DMSRIC: Fortran 77 subroutines for solving continuous-time matrix algebraic Riccati equations with condition and accuracy estimatesPetkov, P. Hr., Konstantinov, M. M., Mehrmann, V. 12 September 2005 (has links) (PDF)
We present new Fortran 77 subroutines which implement the Schur method and the
matrix sign function method for the solution of the continuoustime matrix algebraic
Riccati equation on the basis of LAPACK subroutines. In order to avoid some of
the wellknown difficulties with these methods due to a loss of accuracy, we combine
the implementations with block scalings as well as condition estimates and forward
error estimates. Results of numerical experiments comparing the performance of both
methods for more than one hundred well and illconditioned Riccati equations of order
up to 150 are given. It is demonstrated that there exist several classes of examples for
which the matrix sign function approach performs more reliably and more accurately
than the Schur method. In all cases the forward error estimates allow to obtain a reliable
bound on the accuracy of the computed solution.
|
45 |
Compatible Lie and Jordan algebras and applications to structured matrices and pencils /Mehl, Christian, January 1900 (has links)
Diss.--Mathematik--Chemnitz--Technische Universität, 1998. / Bibliogr. p. 103-105.
|
46 |
Über die Tiefe von Invariantenringen unendlicher GruppenKohls, Martin. Unknown Date (has links) (PDF)
München, Techn. Universiẗat, Diss., 2007.
|
47 |
Zur Topologie quasiperiodischer TilingsKrimmel, Oliver. January 2007 (has links)
Stuttgart, Univ., Diplomarbeit, 2007.
|
48 |
Topology of singular spaces and constructible sheaves /Schürmann, Jörg. January 2003 (has links)
Univ., FB Mathematik, Habil.-Schr., 2001--Hamburg, 2001.
|
49 |
Simplicial complexes of graphs /Jonsson, Jakob, January 1900 (has links)
Thesis (Ph. D.)--Royal Institute of Technology, Stockholm, 2005.
|
50 |
Optimized belief propagation decoding for low delay applications in digital communications /Hehn, Thorsten. January 2009 (has links)
Zugl.: Erlangen, Nürnberg, University, Diss., 2009.
|
Page generated in 0.0688 seconds