Spelling suggestions: "subject:"algebraic"" "subject:"algebraica""
61 |
Microlocal analyticity of Feynman integralsSchultka, Konrad 18 September 2019 (has links)
Wir geben eine rigorose Konstruktion von analytisch-regularisierten
Feynman-Integralen im D-dimensionalen Minkowski-Raum als meromorphe
Distributionen in den externen Impulsen, sowohl in der Impuls- als auch in der
parametrischen Darstellung. Wir zeigen, dass ihre Pole durch die üblichen
Power-counting Formeln gegeben sind, und dass ihr singulärer Träger in
mikrolokalen Verallgemeinerungen der (+alpha)-Landauflächen enthalten ist.
Als weitere Anwendungen geben wir eine Konstruktion von dimensional
regularisierten Integralen im Minkowski-Raum und beweisen Diskontinuitätsformeln
für parametrische Amplituden. / We give a rigorous construction of analytically regularized Feynman integrals in
D-dimensional Minkowski space as meromorphic distributions in the external
momenta, both in the momentum and parametric representation. We show that their
pole structure is given by the usual power-counting formula and that their
singular support is contained in a microlocal generalization of the
alpha-Landau surfaces. As further applications, we give a construction of
dimensionally regularized integrals in Minkowski space and prove discontinuity
formula for parametric amplitudes.
|
62 |
Zum Einfluß elementarer Sätze der mathematischen Logik bei Alfred Tarski auf die Entstehung der drei Computerkonzepte des Konrad ZuseAlex, Jürgen 24 May 2006 (has links) (PDF)
Inhalt der Dissertation ist der Einfluß, den die von Alfred Tarski formulierte mathematische Logik auf die Entstehung der drei Computerkonzepte des Konrad Zuse hatte.
|
63 |
On the solution of the radical matrix equation $X=Q+LX^{-1}L^T$Benner, Peter, Faßbender, Heike 26 November 2007 (has links) (PDF)
We study numerical methods for finding the maximal
symmetric positive definite solution of the nonlinear matrix equation
$X = Q + LX^{-1}L^T$, where Q is symmetric positive definite and L is
nonsingular. Such equations arise for instance in the analysis of
stationary Gaussian reciprocal processes over a finite interval.
Its unique largest positive definite solution coincides with the unique
positive definite solution of a related discrete-time algebraic
Riccati equation (DARE). We discuss how to use the butterfly
SZ algorithm to solve the DARE. This approach is compared to
several fixed point type iterative methods suggested in the
literature.
|
64 |
Foldable triangulationsWitte, Nikolaus. Unknown Date (has links)
Techn. University, Diss., 2007--Darmstadt.
|
65 |
Computational identification of multiple steady states in a multidimensional parameter space /Gehrke, Volker. January 2009 (has links)
Zugl.: Aachen, Techn. University, Diss., 2009.
|
66 |
Positivstellensätze for the Weyl AlgebraZimmermann, Konrad 17 February 2016 (has links)
We prove a strict positivstellensatz for Weyl algebra elements fulfilling an additional, asymptotic strict positivity condition. As a tool we develop a non-commutative analogue to the Newton polytope.
|
67 |
A Multi-Grid Method for Generalized Lyapunov EquationsPenzl, Thilo 07 September 2005 (has links)
We present a multi-grid method for a class of
structured generalized Lyapunov matrix equations.
Such equations need to be solved in each step of
the Newton method for algebraic Riccati equations,
which arise from linear-quadratic optimal control
problems governed by partial differential equations.
We prove the rate of convergence of the two-grid
method to be bounded independent of the dimension
of the problem under certain assumptions.
The multi-grid method is based on matrix-matrix
multiplications and thus it offers a great
potential for a parallelization. The efficiency
of the method is demonstrated by numerical
experiments.
|
68 |
DGRSVX and DMSRIC: Fortran 77 subroutines for solving continuous-time matrix algebraic Riccati equations with condition and accuracy estimatesPetkov, P. Hr., Konstantinov, M. M., Mehrmann, V. 12 September 2005 (has links)
We present new Fortran 77 subroutines which implement the Schur method and the
matrix sign function method for the solution of the continuoustime matrix algebraic
Riccati equation on the basis of LAPACK subroutines. In order to avoid some of
the wellknown difficulties with these methods due to a loss of accuracy, we combine
the implementations with block scalings as well as condition estimates and forward
error estimates. Results of numerical experiments comparing the performance of both
methods for more than one hundred well and illconditioned Riccati equations of order
up to 150 are given. It is demonstrated that there exist several classes of examples for
which the matrix sign function approach performs more reliably and more accurately
than the Schur method. In all cases the forward error estimates allow to obtain a reliable
bound on the accuracy of the computed solution.
|
69 |
Lagrangian invariant subspaces of Hamiltonian matricesMehrmann, Volker, Xu, Hongguo 14 September 2005 (has links)
The existence and uniqueness of Lagrangian invariant subspaces of Hamiltonian matrices is studied. Necessary and sufficient conditions are given in terms of the Jordan structure and certain sign characteristics that give uniqueness of these subspaces even in the presence of purely imaginary eigenvalues. These results are applied to obtain in special cases existence and uniqueness results for Hermitian solutions of continuous time algebraic Riccati equations.
|
70 |
Solving Linear-Quadratic Optimal Control Problems on Parallel ComputersBenner, Peter, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio 11 September 2006 (has links)
We discuss a parallel library of efficient algorithms for the solution of linear-quadratic optimal control problems involving largescale systems with state-space dimension up to $O(10^4)$. We survey the numerical algorithms underlying the implementation of the chosen optimal control methods. The approaches considered here are based on invariant and deflating subspace techniques, and avoid the explicit solution of the associated algebraic Riccati equations in case of possible ill-conditioning. Still, our algorithms can also optionally compute the Riccati solution. The major computational task of finding spectral projectors onto the required invariant or deflating subspaces is implemented using iterative schemes for the sign and disk functions. Experimental results report the numerical accuracy and the parallel performance of our approach on a cluster of Intel Itanium-2 processors.
|
Page generated in 0.0705 seconds