Spelling suggestions: "subject:"algebraic"" "subject:"algebraica""
101 |
Local rigid cohomology of weighted homogeneous hypersurface singularitiesOuwehand, David 16 March 2017 (has links)
Das Ziel dieser Dissertation ist die Erforschung einer gewissen Invariante von Singularitäten über einem Grundkörper k von positiver Charakteristik. Sei x \in X ein singulärer Punkt auf einem k-Schema. Dann ist die lokale rigide Kohomologie im Grad i definiert als H^i_{rig, {x}}(X), also als die rigide Kohomologie von X mit Träger in der Teilmenge {x}. In Kapitel 2 zeigen wir, dass die lokale rigide Kohomologie tatsächlich eine Invariante ist. Das heißt: Sind x'' \in X'' und x \in X kontaktäquivalente singuläre Punkte auf k-Schemata, dann sind die Vektorräume H_{rig, {x}}(X) und H_{rig, {x''}}(X'') zueinander isomorph. Dieser Isomorphismus ist kompatibel mit der Wirkung des Frobenius auf der rigiden Kohomologie. In den Kapiteln 3 und 4 beschäftigen wir uns mit gewichtet homogenen Singularitäten von Hyperflächen. Der Hauptsatz des dritten Kapitels besagt, dass die lokale rigide Kohomologie einer solchen Singularität isomorph ist zu dem G-invarianten Teil von H_{rig}(\Proj^{n-1}_k \setminus \widetilde{S}_{\infty}). Hier bezeichnet \widetilde{S}_{\infty} \subset \Proj^{n-1}_k eine gewisse glatte projektive Hyperfläche und G ist eine endliche Gruppe, die auf der rigiden Kohomologie des Komplements wirkt. Dank einem Algorithmus von Abbott, Kedlaya und Roe ist es möglich, den Frobenius-Automorphismus auf H_{rig}(\Proj^{n-1}_k \setminus \widetilde{S}_{\infty}) annähernd zu berechnen. In Kapitel 4 formulieren wir eine Anpassung dieses Algorithmus, mithilfe derer Berechnungen auf dem G-invarianten Teil gemacht werden können. Der angepasste Algorithmus kann vollständig mithilfe gewichtet homogener Polynome formuliert werden, was für unsere Anwendungen sehr natürlich scheint. In Kapitel 5 formulieren wir einige Vermutungen und offene Probleme, die mit den Ergebnissen der früheren Kapitel zusammenhängen. / The goal of this thesis is to study a certain invariant of isolated singularities over a base field k of positive characteristic. This invariant is called the local rigid cohomology. For a singular point x \in X on a k-scheme, the i-th local rigid cohomology is defined as H^i_{rig, {x}}(X), the i-th rigid cohomology of X with supports in the subset {x}. In chapter 2 we show that the local rigid cohomology is indeed an invariant. That is: if x'' \in X'' and x \in X are contact-equivalent singularities on k-schemes, then the local rigid cohomology spaces H_{rig, {x}}(X) and H_{rig, {x''}}(X'') are isomorphic. The isomorphism that we construct is moreover compatible with the Frobenius action on rigid cohomology. In chapters 3 and 4 we focus our attention on weighted homogeneous hypersurface singularities. Our goal in chapter 3 is to show that for such a singularity, the local rigid cohomology may be identified with the G-invariants of a certain rigid cohomology space $H_{rig}(\Proj^{n-1}_k \setminus \widetilde{S}_{\infty}). Here \widetilde{S}_{\infty} \subset \Proj^{n-1}_k is a smooth projective hypersurface, and G is a certain finite group acting on the rigid cohomology of its complement. It is known that the rigid cohomology of a smooth projective hypersurface is amenable to direct computation. Indeed, an algorithm by Abbott, Kedlaya and Roe allows one to approximate the Frobenius on such a rigid cohomology space. In chapter 4 we will modify this algorithm to deal with the G-invariant part of cohomology. The modified algorithm can be formulated entirely in terms of weighted homogeneous polynomials, which seems natural for our applications. Chapter 5 is a collection of conjectures and open problems that are related to the earlier chapters.
|
102 |
Rank Stratification of Spaces of Quadrics and Moduli of CurvesKadiköylü, Irfan 24 May 2018 (has links)
In dieser Arbeit untersuchen wir Varietäten singulärer, quadratischer Hyperflächen, die eine projektive Kurve enthalten, und effektive Divisoren im Modulraum von Kurven, die mittels verschiedener Eigenschaften von quadratischen Hyperflächen definiert werden.
In Kapitel 2 berechnen wir die Klasse des effektiven Divisors im Modulraum von Kurven mit Geschlecht g und n markierten Punkten, der als der Ort von solchen markierten Kurven definiert ist, dass das Projektion der kanonischen Abbildung der Kurve von den markierten Punkten auf einer quadratischen Hyperfläche liegt. Mithilfe dieser Klasse zeigen wir, dass die Modulräume mit Geschlecht 16, 17 und 8 markierten Punkten Varietäten von allgemeinem Typ sind.
In Kapitel 3 stratifizieren wir den Raum von quadratischen Hyperflächen, die eine projektive Kurve enthalten, mithilfe des Rangs dieser Hyperflächen. Wir zeigen, dass jedes Stratum die erwartete Dimension hat, falls die Kurve ein allgemeines Element des Hilbertschemas ist. Mit Rücksicht auf Rang von quadratischen Hyperflächen, eine ähnliche Konstruktion wie in Kapitel 2 ergibt neue Divisoren im Modulraum von Kurven. Wir berechnen die Klasse von diesen Divisoren und zeigen, dass der Modulraum von Kurven mit Geschlecht 15 und 9 markierten Punkten eine Varietät von allgemeinem Typ ist.
In Kapitel 4 präsentieren wir unterschiedliche Resultate, die mit Themen von vorigen Kapiteln im Zusammenhang stehen. Zum Ersten berechnen wir die Klasse von Divisoren im Modulraum von Kurven, die als die Orte von Kurven definiert sind, wo die maximale Rang Vermutung nicht gilt. Zweitens zeigen wir, dass jedes Geradenbündel als Tensorprodukt von zwei Geradenbündeln mit zwei Schnitten geschrieben werden kann, falls die Kurve allgemein ist und eine gewisse numerische Bedingung erfüllt ist. Zuletzt benutzen wir bekannte Divisorklassen zu zeigen, dass der Modulraum von Kurven mit Geschlecht 12 und 10 markierten Punkten eine Varietät von allgemeinem Typ ist. / In this thesis, we study varieties of singular quadrics containing a projective curve and effective divisors in the moduli space of pointed curves defined via various constructions involving quadric hypersurfaces.
In Chapter 2, we compute the class of the effective divisor in the moduli space of n-pointed genus g curves, which is defined as the locus of pointed curves such that the projection of the canonical model of the curve from the marked points lies on a quadric hypersurface. Using this class, we show that the moduli spaces of 8-pointed genus 16 and 17 curves are varieties of general type.
In Chapter 3, we stratify the space of quadrics that contain a given curve in the projective space, using the ranks of the quadrics. We show, in a certain numerical range, that each stratum has the expected dimension if the curve is general in its Hilbert scheme. By incorporating the datum of the rank of quadrics, a similar construction as the one in Chapter 2 yields new divisors in the moduli space of pointed curves. We compute the class of these divisors and show that the moduli space of 9-pointed genus 15 curves is a variety of general type.
In Chapter 4, we present miscellaneous results, which are related with our main work in the previous chapters. Firstly, we consider divisors in the moduli space of genus g curves, which are defined as the failure locus of maximal rank conjecture for hypersurfaces of degree greater than two. We illustrate three examples of such divisors and compute their classes. Secondly, using the classical correspondence between rank 4 quadrics and pencils on curves, we show that the map that associates to a pair of pencils their tensor product in the Picard variety is surjective, when the curve is general and obvious numerical assumptions are satisfied. Finally, we use divisor classes, that are already known in the literature, to show that the moduli space of 10-pointed genus 12 curves is a variety of general type.
|
103 |
Divisors on moduli spaces of level curvesBruns, Gregor 04 January 2017 (has links)
In dieser Arbeit untersuchen wir drei Fragestellungen. Zwei beschäftigen sich mit Divisoren auf Modulräumen von Kurven mit Levelstruktur, die dritte handelt von Stabilitätseigenschaften der Normalenbündel von kanonischen Kurven. Die erste Frage, die in Kapitel 2 studiert wird, beschäftigt sich mit der Kodairadimension des Modulraums R15,2 von Prym-Varietäten vom Geschlecht 15. Wir studieren einen neuen Divisor auf diesem Modulraum und berechnen seine Klasse in der Standardbasis der Picardgruppe. Mit Hilfe dieser Klasse können wir schlussfolgern, dass R15,2 von allgemeinem Typ ist. In Kapitel 3 setzen wir unsere Untersuchung von Kurven mit Levelstruktur fort und untersuchen für jede Primzahl l Theta-Divisoren auf den Modulräumen R6,l und R8,l. Die Divisoren werden mit Hilfe der Mukai-Bündel von Kurven vom Geschlecht 6 beziehungsweise 8 definiert. Diese Bündel liefern kanonische Einbettungen unserer Kurven in Grassmann-Varietäten und beschreiben fundamentale geometrische Aspekte von Kurven dieser Geschlechter. Indem wir die Klasse des Divisors für g = 8 und l = 3 berechnen, können wir zeigen, dass R8,3 ebenfalls von allgemeinem Typ ist. Schließlich studieren wir in Kapitel 4 die Stabilität des Normalenbündels kanonischer Kurven vom Geschlecht 8 und beweisen, dass das Bündel auf einer generischen Kurve stabil ist. Für kanonische Kurven vom Geschlecht 9 beweisen wir die Stabilität zumindest im Bezug auf Unterbündel von niedrigem Rang. Ebenfalls liefern wir zusätzliche Hinweise für die Vermutung von M. Aprodu, G. Farkas und A. Ortega, die besagt, dass eine generische kanonische Kurve jedes Geschlechts g >= 7 ein stabiles Normalenbündel besitzt. / In this thesis we investigate three questions. Two are about divisors on moduli spaces of level curves, and about the consequences for the birational geometry of these spaces. The third asks about the stability properties of normal bundles of canonical curves. The first question, to be studied in Chapter 2, is about the Kodaira dimension of the moduli space R15,2 of Prym varieties of genus 15. We study a new divisor on this space and calculate its class in terms of the standard basis of the Picard group. This allows us to conclude that R15,2 is of general type. Continuing the study of level curves in Chapter 3, we investigate, for every l, theta divisors on R6,l and R8,l defined in terms of the Mukai bundle of genus 6 and 8 curves, respectively. These bundles provide canonical embeddings of our curves in Grassmann varieties and describe fundamental aspects of the geometry of curves of these genera. Using the class of the divisor for g = 8 and l = 3, we are able to prove that R8,3 is of general type as well. Finally, in Chapter 4 we study the stability of the normal bundle of canonical genus 8 curves and prove that on a general curve the bundle is stable. For canonical genus 9 curves we prove stability at least with respect to subbundles of low ranks. We also provide some more evidence for the conjecture of M. Aprodu, G. Farkas, and A. Ortega that a a general canonical curve of every genus g >= 7 has stable normal bundle.
|
104 |
A Dissection concept for DAEsJansen, Lennart 17 March 2015 (has links)
Diese Arbeit befasst sich mit Differential-algebraischen Gleichungen (DAEs). DAEs spielen eine wichtige Rolle in der Modellierung, der Simulation und der Optimierung von Netzwerken und gekoppelten Problemen in vielen Anwendungsgebieten. Es werden in Bezug auf die Modellierung und die numerische Simulation von DAEs bereits bestehende Ergebnisse diskutiert und erweitert. Des Weiteren wird die globale eindeutige Lösbarkeit und die Sensitivität der Lösungen mit Hinsicht auf Störungen der DAEs untersucht. Häufig wird die Modellierung von multiphysikalischen Anwendungen durch die Kopplung mehrerer einzelner DAE Systeme realisiert. Diese Herangehensweise kann hochdimensionale DAEs erzeugen, welche aufgrund von Instabilitäten nicht von klassischen numerischen Methoden, simuliert werden können. Angesichts dieser Herausforderungen werden drei Ziele formuliert: Erstens wird ein globales Lösungstheorem formuliert und bewiesen, welches auf gekoppelte Systeme angewandt werden kann, um deren Kopplungsansatz mathematisch zu rechtfertigen. Zweitens werden numerische Methoden vorgestellt, welche unter wesentlich schwächeren Strukturannahmen stabil sind und sich daher für die Simulation von gekoppelten Systemen eignen. Drittens wird eine Strategie präsentiert, die es ermöglicht, explizite Methoden auf gekoppelte Systeme anzuwenden. Um diese Ziele zu erreichen, braucht man ein Entkopplungsverfahren für DAEs, welches die folgenden drei Eigenschaften erfüllt: Die Komplexität des Entkopplungsverfahrens sollte nicht die Komplexität der DAE überschreiten. Das Entkopplungsverfahren sollte Eigenschaften wie Symmetrie, Monotonie und positive Definitheit erhalten. Das Entkopplungsverfahren sollte durch einen Schritt-für-Schritt Ansatz mit unabhängigen Schritten realisiert werden. Sowohl das Konzept des Tractability Index als auch das des Strangeness Index liefert kein solches Entkopplungsverfahren. Daher wird hier ein neues Index Konzept eingeführt, das diesen Anforderungen entspricht. / This thesis addresses differential-algebraic equations (DAEs). They play an important role in the modeling, simulation and optimization of networks and coupled problems in various applications. The main application in this thesis are coupled problems in electric circuit simulation. We discuss and extend existing results regarding the modeling and numerical simulation of DAEs. Furthermore, we investigate the global unique solvability and the sensitivity of solutions with respect to perturbations of DAEs. Nowadays the modeling of multi-physical applications is often realized by coupling systems of DAEs together with the help of additional coupling terms. This approach may yield high dimensional DAEs which cannot be simulated, due to instabilities, by standard numerical methods. Regarding these challenges we formulate three objectives: First we provide a global solvability theorem which can be applied to coupled systems to mathematically justify their coupling approach. Second we introduce numerical methods which are stable without needing any structural assumptions. Third we provide a way to apply explicit methods to coupled systems to be able to handle the size of the coupled systems by parallelizing the algorithms. To achieve these objectives, we need a decoupling procedure which fulfills the following three properties: The complexity of the decoupling procedure has to reflect the complexity of the DAE, i.e. the decoupling procedure should be state-independent if possible. The decoupling procedure should preserve properties like symmetry, monotonicity and positive definiteness. The decoupling procedure should be realized by a step-by-step approach with independent stages. Both the Tractability Index concept and the Strangeness Index concept do not provide such a decoupling procedure. For this reason we introduce a new index concept which provides such a decoupling procedure.
|
105 |
Memory efficient approaches of second order for optimal control problems / Speichereffiziente Verfahren zweiter Ordnung für Probleme der optimalen SteuerungSternberg, Julia 16 December 2005 (has links) (PDF)
Consider a time-dependent optimal control problem, where the state evolution is described by an initial value problem. There are a variety of numerical methods to solve these problems. The so-called indirect approach is considered detailed in this thesis. The indirect methods solve decoupled boundary value problems resulting from the necessary conditions for the optimal control problem. The so-called Pantoja method describes a computationally efficient stage-wise construction of the Newton direction for the discrete-time optimal control problem. There are many relationships between multiple shooting techniques and Pantoja method, which are investigated in this thesis. In this context, the equivalence of Pantoja method and multiple shooting method of Riccati type is shown. Moreover, Pantoja method is extended to the case where the state equations are discretised using one of implicit numerical methods. Furthermore, the concept of symplecticness and Hamiltonian systems is introduced. In this regard, a suitable numerical method is presented, which can be applied to unconstrained optimal control problems. It is proved that this method is a symplectic one. The iterative solution of optimal control problems in ordinary differential equations by Pantoja or Riccati equivalent methods leads to a succession of triple sweeps through the discretised time interval. The second (adjoint) sweep relies on information from the first (original) sweep, and the third (final) sweep depends on both of them. Typically, the steps on the adjoint sweep involve more operations and require more storage than the other two. The key difficulty is given by the enormous amount of memory required for the implementation of these methods if all states throughout forward and adjoint sweeps are stored. One of goals of this thesis is to present checkpointing techniques for memory reduced implementation of these methods. For this purpose, the well known aspect of checkpointing has to be extended to a `nested checkpointing` for multiple transversals. The proposed nested reversal schedules drastically reduce the required spatial complexity. The schedules are designed to minimise the overall execution time given a certain total amount of storage for the checkpoints. The proposed scheduling schemes are applied to the memory reduced implementation of the optimal control problem of laser surface hardening and other optimal control problems. / Es wird ein Problem der optimalen Steuerung betrachtet. Die dazugehoerigen Zustandsgleichungen sind mit einer Anfangswertaufgabe definiert. Es existieren zahlreiche numerische Methoden, um Probleme der optimalen Steuerung zu loesen. Der so genannte indirekte Ansatz wird in diesen Thesen detailliert betrachtet. Die indirekten Methoden loesen das aus den Notwendigkeitsbedingungen resultierende Randwertproblem. Das so genannte Pantoja Verfahren beschreibt eine zeiteffiziente schrittweise Berechnung der Newton Richtung fuer diskrete Probleme der optimalen Steuerung. Es gibt mehrere Beziehungen zwischen den unterschiedlichen Mehrzielmethoden und dem Pantoja Verfahren, die in diesen Thesen detailliert zu untersuchen sind. In diesem Zusammenhang wird die aequivalence zwischen dem Pantoja Verfahren und der Mehrzielmethode vom Riccati Typ gezeigt. Ausserdem wird das herkoemlige Pantoja Verfahren dahingehend erweitert, dass die Zustandsgleichungen mit Hilfe einer impliziten numerischen Methode diskretisiert sind. Weiterhin wird das Symplektische Konzept eingefuehrt. In diesem Zusammenhang wird eine geeignete numerische Methode praesentiert, die fuer ein unrestringiertes Problem der optimalen Steuerung angewendet werden kann. In diesen Thesen wird bewiesen, dass diese Methode symplectisch ist. Das iterative Loesen eines Problems der optimalen Steuerung in gewoenlichen Differentialgleichungen mit Hilfe von Pantoja oder Riccati aequivalenten Verfahren fuehrt auf eine Aufeinanderfolge der Durchlaeufetripeln in einem diskretisierten Zeitintervall. Der zweite (adjungierte) Lauf haengt von der Information des ersten (primalen) Laufes, und der dritte (finale) Lauf haeng von den beiden vorherigen ab. Ueblicherweise beinhalten Schritte und Zustaende des adjungierten Laufes wesentlich mehr Operationen und benoetigen auch wesentlich mehr Speicherplatzkapazitaet als Schritte und Zustaende der anderen zwei Durchlaeufe. Das Grundproblem besteht in einer enormen Speicherplatzkapazitaet, die fuer die Implementierung dieser Methoden benutzt wird, falls alle Zustaende des primalen und des adjungierten Durchlaufes zu speichern sind. Ein Ziel dieser Thesen besteht darin, Checkpointing Strategien zu praesentieren, um diese Methoden speichereffizient zu implementieren. Diese geschachtelten Umkehrschemata sind so konstruiert, dass fuer einen gegebenen Speicherplatz die gesamte Laufzeit zur Abarbeitung des Umkehrschemas minimiert wird. Die aufgestellten Umkehrschemata wurden fuer eine speichereffiziente Implementierung von Problemen der optimalen Steuerung angewendet. Insbesondere betrifft dies das Problem einer Oberflaechenabhaertung mit Laserbehandlung.
|
106 |
A Characterization Theorem for Local Operators in Factorizing Scattering Models / Ein Theorem über die Charakterisierung lokaler Operatoren in Modellen mit faktorisierender StreumatrixCadamuro, Daniela 26 October 2012 (has links)
No description available.
|
107 |
Azumaya-Algebren und Oktavenalgebren auf algebraischen Varietäten / Azumaya algebras and octonion algebras on algebraic varietiesStroth, Kristin 23 October 2013 (has links)
Wir behandeln nichtkommutative Algebren über Ringen und auf algebraischen
Varietäten. Im ersten Teil beschreiben wir ein Kriterium, das angibt, ob und wie weit sich eine gegebene Azumaya-Algebra über dem Funktionenkörper einer algebraischen Varietät als Garbe von Azumaya-Algebren auf die Varietät ausdehnen lässt. Außerdem untersuchen wir die lokale Struktur von Azumaya-Algebren oder allgemeiner von Maximalordnungen, die mit Hilfe des Cyclic-Covering-Tricks von Chan konstruiert werden. Mit dieser Methode lassen sich Maximalordnungen auf algebraischen Flächen konstruieren, die zudem genau über einer gewählten Kurve verzweigen.
Im zweiten Teil betrachten wir die nichtassoziativen Oktavenalgebren und allgemeiner auch Kompositionsalgebren über Ringen. Dabei übertragen wir die bekannten Aussagen von Kompositionsalgebren über Körpern auf die Situation von Algebren über Ringen. Wir untersuchen Oktavenalgebren und Maximalordnungen über diskreten Bewertungsringen und verallgemeinern ein Resultat von van der Blij und Springer über die lokale Natur von Maximalordnungen über den rationalen Zahlen und über algebraischen Zahlkörpern auf den Fall von beliebigen noetherschen, ganzabgeschlossenen Integritätsbereichen. Abschließend führen wir eine Definition von Garben von Oktavenalgebren und Garben von Maximalordnungen in Oktavenalgebren über algebraischen Varietäten ein.
|
108 |
Fedosov Quantization and Perturbative Quantum Field TheoryCollini, Giovanni 08 December 2016 (has links)
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (\\\"phase space\\\"). His algorithm gives a non-commutative, but associative, product (a so-called \\\"star-product\\\") between smooth phase space functions parameterized by Planck\\\''s constant ℏ, which is treated as a deformation parameter. In the limit as ℏ goes to zero, the star product commutator goes to ℏ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, we develop a generalization of Fedosov\\\''s method which applies to the infinite-dimensional symplectic \\\"manifolds\\\" that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of this method to more standard perturbative quantization schemes in quantum field theory.
|
109 |
Algebraic decoder specification: coupling formal-language theory and statistical machine translation: Algebraic decoder specification: coupling formal-language theory and statistical machine translationBüchse, Matthias 18 December 2014 (has links)
The specification of a decoder, i.e., a program that translates sentences from one natural language into another, is an intricate process, driven by the application and lacking a canonical methodology. The practical nature of decoder development inhibits the transfer of knowledge between theory and application, which is unfortunate because many contemporary decoders are in fact related to formal-language theory. This thesis proposes an algebraic framework where a decoder is specified by an expression built from a fixed set of operations. As yet, this framework accommodates contemporary syntax-based decoders, it spans two levels of abstraction, and, primarily, it encourages mutual stimulation between the theory of weighted tree automata and the application.
|
110 |
Memory efficient approaches of second order for optimal control problemsSternberg, Julia 20 December 2005 (has links)
Consider a time-dependent optimal control problem, where the state evolution is described by an initial value problem. There are a variety of numerical methods to solve these problems. The so-called indirect approach is considered detailed in this thesis. The indirect methods solve decoupled boundary value problems resulting from the necessary conditions for the optimal control problem. The so-called Pantoja method describes a computationally efficient stage-wise construction of the Newton direction for the discrete-time optimal control problem. There are many relationships between multiple shooting techniques and Pantoja method, which are investigated in this thesis. In this context, the equivalence of Pantoja method and multiple shooting method of Riccati type is shown. Moreover, Pantoja method is extended to the case where the state equations are discretised using one of implicit numerical methods. Furthermore, the concept of symplecticness and Hamiltonian systems is introduced. In this regard, a suitable numerical method is presented, which can be applied to unconstrained optimal control problems. It is proved that this method is a symplectic one. The iterative solution of optimal control problems in ordinary differential equations by Pantoja or Riccati equivalent methods leads to a succession of triple sweeps through the discretised time interval. The second (adjoint) sweep relies on information from the first (original) sweep, and the third (final) sweep depends on both of them. Typically, the steps on the adjoint sweep involve more operations and require more storage than the other two. The key difficulty is given by the enormous amount of memory required for the implementation of these methods if all states throughout forward and adjoint sweeps are stored. One of goals of this thesis is to present checkpointing techniques for memory reduced implementation of these methods. For this purpose, the well known aspect of checkpointing has to be extended to a `nested checkpointing` for multiple transversals. The proposed nested reversal schedules drastically reduce the required spatial complexity. The schedules are designed to minimise the overall execution time given a certain total amount of storage for the checkpoints. The proposed scheduling schemes are applied to the memory reduced implementation of the optimal control problem of laser surface hardening and other optimal control problems. / Es wird ein Problem der optimalen Steuerung betrachtet. Die dazugehoerigen Zustandsgleichungen sind mit einer Anfangswertaufgabe definiert. Es existieren zahlreiche numerische Methoden, um Probleme der optimalen Steuerung zu loesen. Der so genannte indirekte Ansatz wird in diesen Thesen detailliert betrachtet. Die indirekten Methoden loesen das aus den Notwendigkeitsbedingungen resultierende Randwertproblem. Das so genannte Pantoja Verfahren beschreibt eine zeiteffiziente schrittweise Berechnung der Newton Richtung fuer diskrete Probleme der optimalen Steuerung. Es gibt mehrere Beziehungen zwischen den unterschiedlichen Mehrzielmethoden und dem Pantoja Verfahren, die in diesen Thesen detailliert zu untersuchen sind. In diesem Zusammenhang wird die aequivalence zwischen dem Pantoja Verfahren und der Mehrzielmethode vom Riccati Typ gezeigt. Ausserdem wird das herkoemlige Pantoja Verfahren dahingehend erweitert, dass die Zustandsgleichungen mit Hilfe einer impliziten numerischen Methode diskretisiert sind. Weiterhin wird das Symplektische Konzept eingefuehrt. In diesem Zusammenhang wird eine geeignete numerische Methode praesentiert, die fuer ein unrestringiertes Problem der optimalen Steuerung angewendet werden kann. In diesen Thesen wird bewiesen, dass diese Methode symplectisch ist. Das iterative Loesen eines Problems der optimalen Steuerung in gewoenlichen Differentialgleichungen mit Hilfe von Pantoja oder Riccati aequivalenten Verfahren fuehrt auf eine Aufeinanderfolge der Durchlaeufetripeln in einem diskretisierten Zeitintervall. Der zweite (adjungierte) Lauf haengt von der Information des ersten (primalen) Laufes, und der dritte (finale) Lauf haeng von den beiden vorherigen ab. Ueblicherweise beinhalten Schritte und Zustaende des adjungierten Laufes wesentlich mehr Operationen und benoetigen auch wesentlich mehr Speicherplatzkapazitaet als Schritte und Zustaende der anderen zwei Durchlaeufe. Das Grundproblem besteht in einer enormen Speicherplatzkapazitaet, die fuer die Implementierung dieser Methoden benutzt wird, falls alle Zustaende des primalen und des adjungierten Durchlaufes zu speichern sind. Ein Ziel dieser Thesen besteht darin, Checkpointing Strategien zu praesentieren, um diese Methoden speichereffizient zu implementieren. Diese geschachtelten Umkehrschemata sind so konstruiert, dass fuer einen gegebenen Speicherplatz die gesamte Laufzeit zur Abarbeitung des Umkehrschemas minimiert wird. Die aufgestellten Umkehrschemata wurden fuer eine speichereffiziente Implementierung von Problemen der optimalen Steuerung angewendet. Insbesondere betrifft dies das Problem einer Oberflaechenabhaertung mit Laserbehandlung.
|
Page generated in 0.0586 seconds