• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 22
  • 3
  • 3
  • Tagged with
  • 124
  • 70
  • 48
  • 46
  • 28
  • 27
  • 27
  • 21
  • 20
  • 19
  • 18
  • 18
  • 18
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Hilbert-Kunz functions of surface rings of type ADE / Hilbert-Kunz Funktionen zweidimensionaler Ringe vom Typ ADE

Brinkmann, Daniel 27 August 2013 (has links)
We compute the Hilbert-Kunz functions of two-dimensional rings of type ADE by using representations of their indecomposable, maximal Cohen-Macaulay modules in terms of matrix factorizations, and as first syzygy modules of homogeneous ideals.
112

Aspects of the geometry of Prym varieties and their moduli

Maestro Pérez, Carlos 25 October 2021 (has links)
In dieser Doktorarbeit untersuchen wir einige Modulräume der Prym-Paaren, Prym-Varietäten und Spin-Kurven. Nachdem der passende theoretische Rahmen eingeführt wird, erhalten wir neue Ergebnisse zu zwei verschiedenen Aspekten ihrer Geometrie, die wir in zwei entsprechenden Kapiteln beschreiben. In Kapitel 1 betrachten wir die universelle Prym-Varietät über dem Modulraum R_g der Prym-Paaren vom Geschlecht g und bestimmen ihre Unirationalität für g=3. Dazu bilden wir eine explizite rationale Parametrisierung der universellen 2-fachen Prym-Kurve über R_3, die die universelle Prym-Varietät durch die globale Version der Abel-Prym-Abbildung dominiert. Darüber hinaus passen wir den Beweis an den Rahmen von Nikulin-Flächen an und zeigen, dass die universelle doppelte Nikulin-Fläche ebenfalls unirational ist. In Kapitel 2 untersuchen wir die Wechselwirkung zwischen R_g und dem Modulraum S_g der (stabilen) Spin-Kurven vom Geschlecht g. Wenn man den Divisor der Kurven, die mit einem verschwindenden Thetanull ausgestattet sind, von S_g^+ nach R_g versetzt, erhält man zwei geometrische Divisoren der (stabilen) Prym-Kurven mit einem verschwindenden Thetanull. Wir verwenden Testkurventechniken, um die Klassen dieser (Prym-Null-)Divisoren für g>=5 zu berechnen, und werten die Prymnull-Klassen auf einigen weiteren Familien von Kurven aus, um ihre verschwindenden Thetanulls zu analysieren. Darüber hinaus diskutieren wir am Ende von Kapitel 2 eine mögliche Kompaktifizierung des Modulraums der Kurven, die eine doppelte Quadratwurzel tragen. Anschließend untersuchen wir den Rand des Modulraums RS_g der (stabilen) Prym-Spin-Kurven vom Geschlecht g und überprüfen die Prymnull-Klassen anhand des Diagramms R_g<--RS_g-->S_g. Zum Schluss schlagen wir eine Erweiterung des Produkts von Wurzeln, das über glatten Kurven durch das Tensorprodukt definiert ist, zu einer Operation auf stabilen Doppelwurzeln vor. / In this thesis, we study several moduli spaces of Prym pairs, Prym varieties, and spin curves. After the appropriate theoretical framework is introduced, we obtain new results concerning two different aspects of their geometry, which we describe across two corresponding chapters. In Chapter 1, we consider the universal Prym variety over the moduli space R_g of Prym pairs of genus g, and determine its unirationality for g=3. To do this, we build an explicit rational parametrization of the universal 2-fold Prym curve over R_3, which dominates the universal Prym variety through the global version of the Abel-Prym map. Furthermore, we adapt the proof to the setting of Nikulin surfaces and show that the universal double Nikulin surface is also unirational. In Chapter 2, we explore the interaction between R_g and the moduli space S_g of (stable) spin curves of genus g. When the divisor of curves equipped with a vanishing theta-null is moved from S_g^+ to R_g, it yields two geometric divisors of (stable) Prym curves with a vanishing theta-null. We use test curve techniques to compute the classes of these (Prym-null) divisors for g>=5, and evaluate the Prym-null classes on some more families of curves in order to analyse their vanishing theta-nulls. In addition, at the end of Chapter 2 we discuss a potential compactification of the moduli space of curves carrying a double square root. We then examine the boundary of the moduli space RS_g of (stable) Prym-spin curves of genus g and check the Prym-null classes against the diagram R_g<--RS_g-->S_g. Finally, we propose an extension of the product of roots, defined over smooth curves by the tensor product, to an operation on stable double roots.
113

Relational Structure Theory / Relationale Strukturtheorie

Behrisch, Mike 01 August 2013 (has links) (PDF)
This thesis extends a localisation theory for finite algebras to certain classes of infinite structures. Based on ideas and constructions originally stemming from Tame Congruence Theory, algebras are studied via local restrictions of their relational counterpart (Relational Structure Theory). In this respect, first those subsets are identified that are suitable for such a localisation process, i. e. that are compatible with the relational clone structure of the counterpart of an algebra. It is then studied which properties of the global algebra can be transferred to its localisations, called neighbourhoods. Thereafter, it is discussed how this process can be reversed, leading to the concept of covers. These are collections of neighbourhoods that allow information retrieval about the global structure from knowledge about the local restrictions. Subsequently, covers are characterised in terms of a decomposition equation, and connections to categorical equivalences of algebras are explored. In the second half of the thesis, a refinement concept for covers is introduced in order to find optimal, non-refinable covers, eventually leading to practical algorithms for their determination. Finally, the text establishes further theoretical foundations, e. g. several irreducibility notions, in order to ensure existence of non-refinable covers via an intrinsic characterisation, and to prove under some conditions that they are uniquely determined in a canonical sense. At last, the applicability of the developed techniques is demonstrated using two clear expository examples. / Diese Dissertation erweitert eine Lokalisierungstheorie für endliche Algebren auf gewisse Klassen unendlicher Strukturen. Basierend auf Ideen und Konstruktionen, die ursprünglich der Tame Congruence Theory entstammen, werden Algebren über lokale Einschränkungen ihres relationalen Gegenstücks untersucht (Relationale Strukturtheorie). In diesem Zusammenhang werden zunächst diejenigen Teilmengen identifiziert, welche für einen solchen Lokalisierungsprozeß geeignet sind, d. h., die mit der Relationenklonstruktur auf dem Gegenstück einer Algebra kompatibel sind. Es wird dann untersucht, welche Eigenschaften der globalen Algebra auf ihre Lokalisierungen, genannt Umgebungen, übertragen werden können. Nachfolgend wird diskutiert, wie dieser Vorgang umgekehrt werden kann, was zum Begriff der Überdeckungen führt. Dies sind Systeme von Umgebungen, welche die Rückgewinnung von Informationen über die globale Struktur aus Kenntnis ihrer lokalen Einschränkungen erlauben. Sodann werden Überdeckungen durch eine Zerlegungsgleichung charakterisiert und Bezüge zu kategoriellen Äquivalenzen von Algebren hergestellt. In der zweiten Hälfte der Arbeit wird ein Verfeinerungsbegriff für Überdeckungen eingeführt, um optimale, nichtverfeinerbare Überdeckungen zu finden, was letztlich zu praktischen Algorithmen zu ihrer Bestimmung führt. Schließlich erarbeitet der Text weitere theoretische Grundlagen, beispielsweise mehrere Irreduzibilitätsbegriffe, um die Existenz nichtverfeinerbarer Überdeckungen vermöge einer intrinsischen Charakterisierung sicherzustellen und, unter gewissen Bedingungen, zu beweisen, daß sie in kanonischer Weise eindeutig bestimmt sind. Schlußendlich wird die Anwendbarkeit der entwickelten Methoden an zwei übersichtlichen Beispielen demonstriert.
114

On the Construction of Quantum Field Theories with Factorizing S-Matrices / Über die Konstruktion von quantenfeldtheoretischen Modellen mit faktorisierenden S-Matrizen

Lechner, Gandalf 24 May 2006 (has links)
No description available.
115

Spectral theory of automorphism groups and particle structures in quantum field theory / Die Spektraltheorie von Automorphismengruppen und Teilchenstrukturen in der Quantenfeldtheorie

Dybalski, Wojciech Jan 15 December 2008 (has links)
No description available.
116

Characteristic classes of vector bundles with extra structure / Charakteristische Klassen von Vektorbündeln mit Zusatzstruktur

Rahm, Alexander 27 February 2007 (has links)
No description available.
117

Symmetric Squaring in Homology and Bordism / Symmetrisches Quadrieren in Homologie und Bordismus

Krempasky, Seyide Denise 25 August 2011 (has links)
Betrachtet man das kartesische Produkt X × X eines topologischen Raumes X mit sich selbst, so kann auf diesem Objekt insbesondere die Involution betrachtet werden, die die Koordinaten vertauscht, die also (x,y) auf (y,x) abbildet. Das sogenannte 'Symmetrische Quadrieren' in Čech-Homologie mit Z/2-coefficients wurde von Schick et al. 2007 als Abbildung von der k-ten Čech-Homologiegruppe eines Raumes X in die 2k-te Čech-Homologiegruppe von X × X modulu der oben genannten Involution definiert. Es stellt sich heraus, dass diese Konstruktion entscheidend ist für den Beweis eines parametrisierten Borsuk-Ulam-Theorems.Das Symmetrische Quadrieren kann zu einer Abbildung in Bordismus verallgemeinert werden, was der Hauptgegenstand dieser Dissertation ist. Genauer gesagt werden wir zeigen, dass es eine wohldefinierte, natürliche Abbildung von der k-ten singulären Bordismusgruppe von X in die 2k-te Bordismusgruppe von X × X modulu der obigen Involution gibt.Insbesondere ist dieses Quadrieren wirklich eine Verallgemeinerung der Konstruktion in Čech-Homologie, denn es ist vertauschbar mit dem Übergang von Bordismus zu Homologie via dem Fundamentalklassenhomomorphismus. Auf dem Weg zu diesem Resultat wird das Konzept des Čech-Bordismus als Kombination aus Bordismus und Čech-Homologie zunächst definiert und dann mit Čech-Homologie verglichen.
118

Relational Structure Theory: A Localisation Theory for Algebraic Structures

Behrisch, Mike 17 July 2013 (has links)
This thesis extends a localisation theory for finite algebras to certain classes of infinite structures. Based on ideas and constructions originally stemming from Tame Congruence Theory, algebras are studied via local restrictions of their relational counterpart (Relational Structure Theory). In this respect, first those subsets are identified that are suitable for such a localisation process, i. e. that are compatible with the relational clone structure of the counterpart of an algebra. It is then studied which properties of the global algebra can be transferred to its localisations, called neighbourhoods. Thereafter, it is discussed how this process can be reversed, leading to the concept of covers. These are collections of neighbourhoods that allow information retrieval about the global structure from knowledge about the local restrictions. Subsequently, covers are characterised in terms of a decomposition equation, and connections to categorical equivalences of algebras are explored. In the second half of the thesis, a refinement concept for covers is introduced in order to find optimal, non-refinable covers, eventually leading to practical algorithms for their determination. Finally, the text establishes further theoretical foundations, e. g. several irreducibility notions, in order to ensure existence of non-refinable covers via an intrinsic characterisation, and to prove under some conditions that they are uniquely determined in a canonical sense. At last, the applicability of the developed techniques is demonstrated using two clear expository examples.:1 Introduction 2 Preliminaries and Notation 2.1 Functions, operations and relations 2.2 Algebras and relational structures 2.3 Clones 3 Relational Structure Theory 3.1 Finding suitable subsets for localisation 3.2 Neighbourhoods 3.3 The restricted algebra A|U 3.4 Covers 3.5 Refinement 3.6 Irreducibility notions 3.7 Intrinsic description of non-refinable covers 3.8 Elaborated example 4 Problems and Prospects for Future Research Acknowledgements Index of Notation Index of Terms Bibliography / Diese Dissertation erweitert eine Lokalisierungstheorie für endliche Algebren auf gewisse Klassen unendlicher Strukturen. Basierend auf Ideen und Konstruktionen, die ursprünglich der Tame Congruence Theory entstammen, werden Algebren über lokale Einschränkungen ihres relationalen Gegenstücks untersucht (Relationale Strukturtheorie). In diesem Zusammenhang werden zunächst diejenigen Teilmengen identifiziert, welche für einen solchen Lokalisierungsprozeß geeignet sind, d. h., die mit der Relationenklonstruktur auf dem Gegenstück einer Algebra kompatibel sind. Es wird dann untersucht, welche Eigenschaften der globalen Algebra auf ihre Lokalisierungen, genannt Umgebungen, übertragen werden können. Nachfolgend wird diskutiert, wie dieser Vorgang umgekehrt werden kann, was zum Begriff der Überdeckungen führt. Dies sind Systeme von Umgebungen, welche die Rückgewinnung von Informationen über die globale Struktur aus Kenntnis ihrer lokalen Einschränkungen erlauben. Sodann werden Überdeckungen durch eine Zerlegungsgleichung charakterisiert und Bezüge zu kategoriellen Äquivalenzen von Algebren hergestellt. In der zweiten Hälfte der Arbeit wird ein Verfeinerungsbegriff für Überdeckungen eingeführt, um optimale, nichtverfeinerbare Überdeckungen zu finden, was letztlich zu praktischen Algorithmen zu ihrer Bestimmung führt. Schließlich erarbeitet der Text weitere theoretische Grundlagen, beispielsweise mehrere Irreduzibilitätsbegriffe, um die Existenz nichtverfeinerbarer Überdeckungen vermöge einer intrinsischen Charakterisierung sicherzustellen und, unter gewissen Bedingungen, zu beweisen, daß sie in kanonischer Weise eindeutig bestimmt sind. Schlußendlich wird die Anwendbarkeit der entwickelten Methoden an zwei übersichtlichen Beispielen demonstriert.:1 Introduction 2 Preliminaries and Notation 2.1 Functions, operations and relations 2.2 Algebras and relational structures 2.3 Clones 3 Relational Structure Theory 3.1 Finding suitable subsets for localisation 3.2 Neighbourhoods 3.3 The restricted algebra A|U 3.4 Covers 3.5 Refinement 3.6 Irreducibility notions 3.7 Intrinsic description of non-refinable covers 3.8 Elaborated example 4 Problems and Prospects for Future Research Acknowledgements Index of Notation Index of Terms Bibliography
119

Splitting Methods for Partial Differential-Algebraic Systems with Application on Coupled Field-Circuit DAEs

Diab, Malak 28 February 2023 (has links)
Die Anwenung von Operator-Splitting-Methoden auf gewöhnliche Differentialgleichungen ist gut etabliert. Für Differential-algebraische Gleichungen und partielle Differential-algebraische Gleichungen unterliegt sie jedoch vielen Einschränkungen aufgrund des Vorhandenseins von Nebenbedingungen. Die räumliche Diskretisierung reduziert PDAEs und lenkt unseren Fokus auf das Konzept der DAEs. Um eine reibungslose Übertragung des Operator-Splittings von ODEs auf DAEs durchzuführen, ist es wichtig, eine geeignete entkoppelte Struktur für das gewünschte Differential-algebraische System zu haben. In dieser Arbeit betrachten wir ein Modell, das partielle Differentialgleichungen für elektromagnetische Bauelemente - modelliert durch die Maxwell-Gleichungen - mit Differential-algebraischen Gleichungen koppelt, die die elementaren Schaltungselemente beschreiben. Nach der räumlichen Diskretisierung der klassischen Formulierung der Maxwell-Gleichungen mit Hilfe der finiten Integrationstechnik formulieren wir das resultierende gekoppelte System als Differential-algebraische Gleichung. Um eine geeignete Entkopplung zu bekommen, verwenden wir den zweigorientierten Loop-Cutset-Ansatz für die Schaltungsmodellierung. Daraus folgt, dass wir in der Lage sind, eine geeignete Operatorzerlegung so zu konstruieren, dass wir eine natürliche topologisch entkoppelte Port-Hamiltonsche DAE-Struktur erhalten. Wir schlagen einen Operator-Splitting-Ansatz für die Schaltungs-DAEs und gekoppelten Feld-Schaltungs-DAEs in entkoppelter Form vor und analysieren seine numerischen Eigenschaften. Darüber hinaus nutzen wir das Hamiltonsche Verhalten der inhärenten gewöhnlichen Differentialgleichung durch die Verwendung expliziter und energieerhaltender Zeitintegrations-methoden. Schließlich führen wir numerische Tests, um das mathematische Modell zu illustrieren und die Konvergenzergebnisse für das vorgeschlagene DAE-Operator-Splitting zu demonstrieren. / Le equazioni algebriche differenziali e algebriche alle derivate parziali hanno avuto un enorme successo come modelli di sistemi dinamici vincolati. Nella modellazione matem- atica, spesso si desidera catturare diversi aspetti di una situazione come le leggi di conservazione della fisica, il trasporto convettivo o la diffusione. Queste aspetti si riflettono nel sistema di equazioni del modello come operatori diversi. La tecnica dell’Operator Splitting si è rivelata una strategia di successo per affrontare problemi così complicati. L’applicazione dei metodi di Operator Splitting alle equazioni differenziali ordinarie (ODE) è ormai una tecnologia ben consolidata. Tuttavia, per equazioni algebriche differenziali (DAE) e algebriche differenziali parziali (PDAE), l’approccio è soggetto a molte restrizioni dovute alla presenza di vincoli e alla proprietà di indice. La discretizzazione spaziale riduce le PDAE e indirizza la nostra attenzione al concetto di DAE. Le DAE emergono in problemi dinamici vincolati come circuiti elettrici o reti di trasporto di energia. Al fine di generalizzare agevolmente la tecnica dell’Operator Splitting dalle ODE alle DAE, è importante avere una struttura disaccoppiata adeguata per il sistema algebrico differenziale desiderato. In questa tesi, consideriamo un modello che accoppia equazioni differenziali alle derivate parziali per dispositivi elettromagnetici -modellati dalle equazioni di Maxwell- con equazioni algebriche differenziali che descrivono gli elementi base del circuito. Dopo aver discretizzato spazialmente la formulazione classica delle equazioni di Maxwell usando la tecnica di integrazione finita, formuliamo il sistema accoppiato risultante come una equazione algebrica differenziale. Interpretando il dispositivo elettromagnetico come un elemento capacitivo, l’indice dell’intero sistema di circuito e campo accoppiato può essere specificato utilizzando le proprietà topologiche del circuito e non supera il valore di due. Per eseguire un disaccoppiamento appropriato, utilizziamo l’approccio loop-cutset per la modellazione dei circuiti. In tal modo siamo in grado di costruire una opportuna decomposizione dell’operatore tale da ottenere una naturale struttura disaccoppiata port-Hamiltonian DAE. Proponiamo un approccio di suddivisione dell’operatore per i DAE a circuito disaccoppiato e a circuito di campo accoppiato utilizzando gli algoritmi di divisione Lie-Trotter e Strang e per analizzare le proprietà numeriche di questi sistemi. Inoltre, sfruttiamo il comportamento hamiltoniano del sistema di equazioni differenziali ordinarie mediante l’utilizzo di metodi di integrazione temporale con esatta conservazione dell’energia. Poggiando sull’analisi di convergenza del metodo di suddivisione dell’operatore ODE, deriviamo i risultati di convergenza per l’approccio proposto che dipendono dall’indice delsistema e quindi dalla sua struttura topologica. Infine, eseguiamo prove numeriche di sistemi circuitali, nonchè sistemi accoppiati a circuito di campo, per testare il modello matematico e dimostrare i risultati di convergenza per la proposta Operator Splitting DAE. / The application of operator splitting methods to ordinary differential equations (ODEs) is well established. However, for differential-algebraic equations (DAEs) and partial differential-algebraic equations (PDAEs), it is subjected to many restrictions due to the presence of constraints. In constrained dynamical problems as electrical circuits or energy transport networks, DAEs arise. In order to perform a smooth transfer of the operator splitting from ODEs to DAEs, it is important to have a suitable decoupled structure for the desired differential-algebraic system. In this thesis, we consider a model which couples partial differential equations for electro- magnetic devices -modeled by Maxwell’s equations- with differential-algebraic equations describing the basic circuit elements. After spatially discretizing the classical formulation of Maxwell’s equations using the finite integration technique, we formulate the resulting coupled system as a differential-algebraic equation. To perform an appropriate decoupling, we use the branch oriented loop-cutset approach for circuit modeling. It follows that we are able to construct a suitable operator decomposition such that we obtain a natural topologically decoupled port-Hamiltonian DAE structure. We propose an operator splitting approach for the decoupled circuit and coupled field- circuit DAEs using the Lie-Trotter and Strang splitting algorithms and analyze its numerical properties. Furthermore, we exploit the Hamiltonian behavior of the system’s inherent ordinary differential equation by the utilization of explicit and energy-preserving time integration methods. Based on the convergence analysis of the ODE operator splitting method, we derive convergence results for the proposed approach that depends on the index of the system and thus on its topological structure. Finally, we perform numerical tests, to underline the mathematical model and to demonstrate the convergence results for the proposed DAE operator splitting.
120

Circuit Simulation Including Full-Wave Maxwell's Equations / Modeling Aspects and Numerical Analysis

Strohm, Christian 15 March 2021 (has links)
Diese Arbeit widmet sich der Simulation von elektrischen/elektronischen Schaltungen welche um elektromagnetische Bauelemente erweitert werden. Im Fokus stehen unterschiedliche Kopplungen der Schaltungsgleichungen, modelliert mit der modifizierten Knotenanalyse, und den elektromagnetischen Bauelementen mit deren verfeinerten Modell basierend auf den vollen Maxwell-Gleichungen in der Lorenz-geeichten A-V Formulierung welche durch Finite-Integrations-Technik räumlich diskretisiert werden. Eine numerische Analyse erweitert die topologischen Kriterien für den Index der resultierenden differential-algebraischen Gleichungen, wie sie bereits in anderen Arbeiten mit ähnlichen Feld/Schaltkreis-Kopplungen hergeleitet wurden. Für die Simulation werden sowohl ein monolithischer Ansatz als auch Waveform-Relaxationsmethoden untersucht. Im Mittelpunkt stehen dabei Zeitintegration, Skalierungsmethoden, strukturelle Eigenschaften und ein hybride Ansatz zur Lösung der zugrundeliegenden linearen Gleichungssysteme welcher den Einsatz spezialisierter Löser für die jeweiligen Teilsysteme erlaubt. Da die vollen Maxwell-Gleichungen zusätzliche Ableitungen in der Kopplungsstruktur verursachen, sind bisher existierende Konvergenzaussagen für die Waveform-Relaxation von gekoppelten differential-algebraischen Gleichungen nicht anwendbar und motivieren eine neue Konvergenzanalyse. Auf dieser Analyse aufbauend werden hinreichende topologische Kriterien entwickelt, welche eine Konvergenz von Gauß-Seidel- und Jacobi-artigen Waveform-Relaxationen für die gekoppelten Systeme garantieren. Schließlich werden numerische Benchmarks zur Verfügung gestellt, um die eingeführten Methoden und Theoreme dieser Abhandlung zu unterstützen. / This work is devoted to the simulation of electrical/electronic circuits incorporating electromagnetic devices. The focus is on different couplings of the circuit equations, modeled with the modified nodal analysis, and the electromagnetic devices with their refined model based on full-wave Maxwell's equations in Lorenz gauged A-V formulation which are spatially discretized by the finite integration technique. A numerical analysis extends the topological criteria for the index of the resulting differential-algebraic equations, as already derived in other works with similar field/circuit couplings. For the simulation, both a monolithic approach and waveform relaxation methods are investigated. The focus is on time integration, scaling methods, structural properties and a hybrid approach to solve the underlying linear systems of equations with the use of specialized solvers for the respective subsystems. Since the full-Maxwell approach causes additional derivatives in the coupling structure, previously existing convergence statements for the waveform relaxation of coupled differential-algebraic equations are not applicable and motivate a new convergence analysis. Based on this analysis, sufficient topological criteria are developed which guarantee convergence of Gauss-Seidel and Jacobi type waveform relaxation schemes for introduced coupled systems. Finally, numerical benchmarks are provided to support the introduced methods and theorems of this treatise.

Page generated in 0.0587 seconds