• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 9
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 121
  • 121
  • 102
  • 100
  • 36
  • 30
  • 28
  • 25
  • 24
  • 22
  • 19
  • 19
  • 19
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Desarrollo de técnicas de computación evolutiva : multiobjetivo y aprendizaje automático para la inferencia, modelado y simulación de redes regulatorias

Gallo, Cristian Andrés 19 March 2014 (has links)
Durante las últimas décadas el desarrollo de la bioinformática nos ha permitido lograr una mayor comprensión de los procesos biológicos que ocurren con nuestras células a nivel molecular. Al respecto, las mejoras e innovaciones en la tecnología continúan estimulando la mejora en la calidad de los datos biológicos que pueden ser obtenidos a nivel genómico. En tal sentido, grandes volúmenes de información pueden ser encontrados en formas de anotaciones o bases de datos computacionales. Estos conjuntos de datos, apropiadamente combinados, tienen el potencial de posibilitar descubrimientos novedosos que lleven a avances en campos tan relevantes para el desarrollo nacional como son la biotecnología o la medicina post-genómica. En particular, esta tesis se centra en la investigación de técnicas de aprendizaje automático y computación evolutiva para la inferencia de redes regulatorias de genes a partir de datos de expresión de genes, a nivel de genomas completos. Una red regulatoria de genes es una colección de segmentos de ADN (ácido desoxirribonucleico) en una célula que interactúan unos con otros (indirectamente a través del producto de su expresión) y con otras sustancias en la célula, gobernando así las tasas de transcripción de los genes de la red en ARNm (ácido ribonucleico mensajero). La principal contribución de esta tesis esta relacionada con el desarrollo de metodologías computacionales que asistan, a expertos en bioinformática, en la ingeniería inversa de las redes regulatorias de genes. En tal sentido, se desarrollaron algoritmos de computación evolutiva que permiten la identificación de grupos de genes co-expresados bajo ciertos subconjuntos de condiciones experimentales. Estos algoritmos se aplican sobre datos de expresión de genes, y optimizan características deseables desde el punto de vista biológico, posibilitando la obtención de relaciones de co-expresión relevantes. Tales algoritmos fueron cuidadosamente validados por medio de comparaciones con otras técnicas similares disponibles en la literatura, realizando estudios con datos reales y sintéticos a fin de mostrar la utilidad de la información extraída. Además, se desarrolló un algoritmo de inferencia que permite la extracción de potenciales relaciones causa-efecto entre genes, tanto simultáneas como también aquellas diferidas en el tiempo. Este algoritmo es una evolución de una técnica presentada con anterioridad, e incorpora características novedosas como la posibilidad de inferir reglas con múltiples retardos en el tiempo, a nivel genoma completo, e integrando múltiples conjuntos de datos. La técnica se validó mostrando su eficacia respecto de otros enfoques relevantes de la literatura. También se estudiaron los resultados obtenidos a partir de conjuntos de datos reales en términos de su relevancia biológica, exponiendo la viabilidad de la información inferida. Finalmente, estos algoritmos se integraron en una plataforma de software que facilita la utilización de estas técnicas permitiendo la inferencia, manipulación y visualización de redes regulatorias de genes. / In recent decades, the development of bioinformatics has allowed us to achieve a greater understanding of the biological processes that occur at the molecular level in our cells. In this regard, the improvements and innovations in technology continue to boost the improvement in the quality of the biological data that can be obtained at the genomic level. In this regard, large volumes of information can be found in forms of ontology's or computer databases. These datasets, appropriately combined, have the potential to enable novel discoveries that lead to progress in relevant fields to national development such as biotechnology and post-genomic medicine. In particular, this thesis focuses on the research of machine learning techniques and evolutionary computation for the inference of gene regulatory networks from gene expression data at genome-wide levels. A gene regulatory network is a collection of segments of DNA (deoxyribonucleic acid) in a cell which interact with each other (indirectly through their products of expression) and with other substances in the cell, thereby governing the rates of network genes transcription into mRNA (messenger ribonucleic acid). The main contribution of this thesis is related to the development of computational methodologies to attend experts in bioinformatics in the reverse engineering of gene regulatory networks. In this sense, evolutionary algorithms that allow the identification of groups of coexpressed genes under certain subsets of experimental conditions were developed. These algorithms are applied to gene expression data, and optimize desirable characteristics from the biological point of view, allowing the inference of relevant co-expression relationships. Such algorithms were carefully validated by the comparison with other similar techniques available in the literature, conducting studies with real and synthetic data in order to show the usefulness of the information extracted. Furthermore, an inference algorithm that allows the extraction of potential cause-effect relationships between genes, both simultaneous and time-delayed, were developed. This algorithm is an evolution of a previous approach, and incorporates new features such as the ability to infer rules with multiple time delays, at genome-wide level, and integrating multiple datasets. The technique was validated by showing its effectiveness over other relevant approaches in the literature. The results obtained from real datasets were also studied in terms of their biological relevance by exposing the viability of the inferred information. Finally, these algorithms were integrated into a software platform that facilitates the use of these techniques allowing the inference, manipulation and visualization of gene regulatory networks.
32

Planificación operativa del ruteo de vehículos y programación de cargas desde un enfoque multi-objetivo, en una red de distribución urbana de mercaderías perecederas, usando técnicas computacionales evolutivas

Miguel, Fabio Maximiliano 28 March 2017 (has links)
Esta tesis se enmarca en el campo de las Operaciones, un área de las Ciencias de la Administración. El objetivo es el desarrollo y la validación de herramientas tecnológicas para la toma de decisiones en la rama logística de la gestión de la cadena de suministro de la industria alimentaria. Más específicamente, presentamos un novedoso procedimiento inteligente híbrido que ayuda a los responsables de la toma de decisiones a optimizar en un entorno multi-objetivo. Examinamos los modelos habituales de la distribución física de los bienes, clasificándolos según sus principales características. También presentamos los algoritmos evolutivos multi-objetivo que generalmente brindan las soluciones a esos modelos. Nuestro enfoque es introducir una nueva variante multi-objetivo del problema de distribución de bienes en un área urbana. Para modelar la red de centros de distribución, al servicio de los puntos de venta finales de productos, agregamos franjas horarias y otros requisitos. Consideramos la dependencia temporal de los programas óptimos de distribución, a diferencia del caso de los sistemas logísticos de media y larga distancia, para los cuales la distancia es el criterio clave. También agregamos el objetivo de equilibrar cargas entre las diferentes unidades operativas. Una hibridación del algoritmo evolutivo multi-objetivo NSGA-II es nuestra elección de herramienta computacional, junto con el concepto de g-dominación para preferencias parciales, que proporciona la guía informativa en el espacio de búsqueda. Las fases de validación y prueba de este algoritmo utilizan datos del mundo real, comparando sus resultados con los resultados de otros procedimientos evolutivos multi-objetivo utilizados para la solución de problemas complejos de distribución. La información fue proporcionada por un operador logístico, especializado en el transporte y la distribución de cargas fraccionarias. En todos los casos examinados, nuestro algoritmo se desempeñó mejor que los habituales. / This thesis is framed in the field of Operations, an area of Management Science. The goal is the development and validation of technological tools for decision- making in the logistic branch of supply chain management of the food industry. More specifically, we present a novel hybrid intelligent procedure aiding decision- makers optimizing in a multi-objective environment. We examine the usual models of the physical distribution of goods, classifying them according to their main features. We also present the multi-objective evolutionary algorithms that usually yield the solutions to those models. Our approach is to introduce a new multi-objective variant of the distribution problem of goods in an urban area. To model the network of distribution centers, serving the final outlets of goods, we add time frames and other requirements. We consider the time dependence of the optimal programs of distribution, unlike the case of medium and long-distance logistical systems, for which the distance is the key criterion. We also add the objective of balancing loads among the different operating units. A hybridation of the multi-objective evolutionary algorithm NSGA-II is our choice of computational tool, jointly with the concept of g-dominance for partial preferences, which provides the informational guide in the search space. The validation and testing phases of this algorithm uses real-world data, comparing its outcomes to the results of other evolutionary multi-objective procedures used for the solution of complex problems of distribution. The information was provided by a logistic operator, specialized in transporting and distributing fractional loads. In all the cases examined, our algorithm performed better than the usual ones.
33

Diseño óptimo de sistemas de distribución de agua mediante Agent Swarm Optimization

Montalvo Arango, Idel 02 March 2012 (has links)
La necesidad de hacer eficientes y económicamente viables las grandes inversiones relacionadas con la construcción y el mantenimiento de las redes de abastecimiento de agua, hace que se preste especial atención al diseño de este tipo de redes. Concebir soluciones económicamente optimizadas y que garanticen un adecuado funcionamiento de los sistemas de distribución de agua (SDA), tomando en cuenta la fiabilidad de la red para ofrecer sus servicios, incluso ante posibles condiciones de fallo, es uno de los grandes retos que han tenido desde hace muchos años varios hombres y mujeres de ciencias que han trabajado el tema. Se impone obtener los mayores beneficios con los menores costes. En el diseño óptimo de sistemas de distribución de agua, como muchos otros problemas de optimización, los objetivos a optimizar están frecuentemente en conflicto unos con otros. Ante este hecho, más conveniente que encontrar una única solución, es elaborar un conjunto de soluciones que representen el mejor compromiso posible entre todos los objetivos involucrados. En los últimos 15 años, varios investigadores se han desviado de las técnicas tradicionales de optimización basadas en la programación lineal y no lineal, para dirigirse hacia la implementación de Algoritmos Evolutivos. En esta investigación se proponen soluciones para el diseño óptimo de SDA basadas en el empleo de una generalización del algoritmo Particle Swarm Optimization (PSO) orientada a la inteligencia artificial distribuida tomando como base a los sistemas multi-agente (MA). El algoritmo final propuesto recibió la denominación de Agent Swarm Optimization (ASO) El algoritmo ASO se aprovecha de las ventajas de la computación paralela y distribuida para hacer interactuar diversas poblaciones de agentes que pueden tener comportamientos diferentes. Su versatilidad da origen a su principal fortaleza: la introducción de agentes con reglas de comportamiento específicas para la mejor solución de un problema, que problema, que trabajan de manera conjunta con algoritmos evolutivos de carácter general como PSO, Algoritmos Genéticos, Ant Colony Optimization, etcétera. / Montalvo Arango, I. (2011). Diseño óptimo de sistemas de distribución de agua mediante Agent Swarm Optimization [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14858
34

[en] NEUROEVOLUTIONARY MODELS WITH ECHO STATE NETWORKS APPLIED TO SYSTEM IDENTIFICATION / [pt] MODELOS NEUROEVOLUCIONÁRIOS COM ECHO STATE NETWORKS APLICADOS À IDENTIFICAÇÃO DE SISTEMAS

PAULO ROBERTO MENESES DE PAIVA 11 January 2019 (has links)
[pt] Através das técnicas utilizadas em Identificação de Sistemas é possível obter um modelo matemático para um sistema dinâmico somente a partir de dados medidos de suas entradas e saídas. Por possuírem comportamento naturalmente dinâmico e um procedimento de treinamento simples e rápido, o uso de redes neurais do tipo Echo State Networks (ESNs) é vantajoso nesta área. Entretanto, as ESNs possuem hiperparâmetros que devem ser ajustados para que obtenham um bom desempenho em uma dada tarefa, além do fato de que a inicialização aleatória de pesos da camada interna destas redes (reservatório) nem sempre ser a ideal em termos de desempenho. Por teoricamente conseguirem obter boas soluções com poucas avaliações, o AEIQ-R (Algoritmo Evolutivo com Inspiração Quântica e Representação Real) e a estratégia evolucionária com adaptação da matriz de covariâncias (CMA-ES) representam alternativas de algoritmos evolutivos que permitem lidar de maneira eficiente com a otimização de hiperparâmetros e/ou pesos desta rede. Sendo assim, este trabalho propõe um modelo neuroevolucionário que define automaticamente uma ESN para aplicações de Identificação de Sistemas. O modelo inicialmente foca na otimização dos hiperparâmetros da ESN utilizando o AEIQ-R ou o CMA-ES, e, num segundo momento, seleciona o reservatório mais adequado para esta rede, o que pode ser feito através de uma segunda otimização focada no ajuste de alguns pesos do reservatório ou por uma escolha simples baseando-se em redes com reservatórios aleatórios. O método proposto foi aplicado a 9 problemas benchmark da área de Identificação de Sistemas, apresentando bons resultados quando comparados com modelos tradicionais. / [en] Through System Identification techniques is possible to obtain a mathematical model for a dynamic system from its input/output data. Due to their intrinsic dynamic behavior and simple and fast training procedure, the use of Echo State Networks, which are a kind of neural networks, for System Identification is advantageous. However, ESNs have global parameters that should be tuned in order to improve their performance in a determined task. Besides, a random reservoir may not be ideal in terms of performance. Due to their theoretical ability of obtaining good solutions with few evaluations, the Real Coded Quantum-Inspired Evolutionary Algorithm (QIEA-R) and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) represent efficient alternatives of evolutionary algorithms for optimizing ESN global parameters and/or weights. Thus, this work proposes a neuro-evolutionary method that automatically defines an ESN for System Identification problems. The method initially focuses in finding the best ESN global parameters by using the QIEA-R or the CMA-ES, then, in a second moment, in selecting its best reservoir, which can be done by a second optimization focused on some reservoir weights or by doing a simple choice based on networks with random reservoirs. The method was applied to 9 benchmark problems in System Identification, showing good results when compared to traditional methods.
35

Algoritmos evolutivos como estimadores de frequência e fase de sinais elétricos: métodos multiobjetivos e paralelização em FPGAs / Evolutionary algorithm as estimators of frequency and phase of electrical signal: multi objective methods and FPGA parallelization

Silva, Tiago Vieira da 19 September 2013 (has links)
Este trabalho propõe o desenvolvimento de Algoritmos Evolutivos (AEs) para estimação dos parâmetros que modelam sinais elétricos (frequência, fase e amplitude) em tempo-real. A abordagem proposta deve ser robusta a ruídos e harmônicos em sinais distorcidos, por exemplo devido à presença de faltas na rede elétrica. AEs mostram vantagens para lidar com tais tipos de sinais. Por outro lado, esses algoritmos quando implementados em software não possibilitam respostas em tempo-real para uso da estimação como relé de frequência ou Unidade de Medição Fasorial. O desenvolvimento em FPGA apresentado nesse trabalho torna possível paralelizar o cálculo da estimação em hardware, viabilizando AEs para análise de sinal elétrico em tempo real. Além disso, mostra-se que AEs multiobjetivos podem extrair informações não evidentes das três fases do sistema e estimar os parâmetros adequadamente mesmo em casos em que as estimativas por fase divirjam entre si. Em outras palavras, as duas principais contribuições computacionais são: a paralelização do AE em hardware por meio de seu desenvolvimento em um circuito de FPGA otimizado a nível de operações lógicas básicas e a modelagem multiobjetiva do problema possibilitando análises dos sinais de cada fase, tanto independentemente quanto de forma agregada. Resultados experimentais mostram superioridade do método proposto em relação ao estimador baseado em transformada de Fourier para determinação de frequência e fase / This work proposes the development of Evolutionary Algorithms (EAs) for the estimation of the basic parameters from electrical signals (frequency, phase and amplitude) in real time. The proposed approach must be robust to noise and harmonics in signals distorted, for example, due to the presence of faults in the electrical network. EAs show advantages for dealing with these types of signals. On the other hand, these algorithms when implemented in software cant produce real-time responses in order to use their estimations as frequency relay or Phasor Measurement Unit. The approach developed on FPGA proposed in this work parallelizes in hardware the process of estimation, enabling analyses of electrical signals in real time. Furthermore, it is shown that multi-objective EAs can extract non-evident information from the three phases of the system and properly estimate parameters even when the phase estimates diverge from each other. This research proposes: the parallelization of an EA in hardware through its design on FPGA circuit optimized at level of basic logic operations and the modeling of the problem enabling multi-objective analyses of the signals from each phase in both independent and aggregate ways. Experimental results show the superiority of the proposed method compared to an estimator based on Fourier transform for determining frequency and phase
36

Algoritmo híbrido multi-objetivo para predição de estrutura terciária de proteínas / Multi-objective approach to protein tertiary structure prediction

Faccioli, Rodrigo Antonio 12 April 2007 (has links)
Muitos problemas de otimização multi-objetivo utilizam os algoritmos evolutivos para encontrar as melhores soluções. Muitos desses algoritmos empregam as fronteiras de Pareto como estratégia para obter tais soluções. Entretando, conforme relatado na literatura, há a limitação da fronteira para problemas com até três objetivos, podendo tornar seu emprego insatisfatório para os problemas com quatro ou mais objetivos. Além disso, as propostas apresentadas muitas vezes eliminam o emprego dos algoritmos evolutivos, os quais utilizam tais fronteiras. Entretanto, as características dos algoritmos evolutivos os qualificam para ser empregados em problemas de otimização, como já vem sendo difundido pela literatura, evitando eliminá-lo por causa da limitação das fronteiras de Pareto. Assim sendo, neste trabalho se buscou eliminar as fronteiras de Pareto e para isso utilizou a lógica Fuzzy, mantendo-se assim o emprego dos algoritmos evolutivos. O problema escolhido para investigar essa substituição foi o problema de predição de estrutura terciária de proteínas, pois além de se encontrar em aberto é de suma relevância para a área de bioinformática. / Several multi-objective optimization problems utilize evolutionary algorithms to find the best solution. Some of these algoritms make use of the Pareto front as a strategy to find these solutions. However, according to the literature, the Pareto front limitation for problems with up to three objectives can make its employment unsatisfactory in problems with four or more objectives. Moreover, many authors, in most cases, propose to remove the evolutionay algorithms because of Pareto front limitation. Nevertheless, characteristics of evolutionay algorithms qualify them to be employed in optimization problems, as it has being spread out by literature, preventing to eliminate it because the Pareto front elimination. Thus being, this work investigated to remove the Pareto front and for this utilized the Fuzzy logic, remaining itself thus the employ of evolutionary algorithms. The choice problem to investigate this remove was the protein tertiary structure prediction, because it is a open problem and extremely relevance to bioinformatic area.
37

ALGORITMO GENÉTICO APLICADO AO PLANEJAMENTO DE REDES DE TELECOMUNICAÇÕES / GENETIC ALGORITHM APPLIED TO THE PLANNING OF TELECOMMUNICATIONS NETWORKS

Campos, Emerson de Souza 29 March 2017 (has links)
Submitted by admin tede (tede@pucgoias.edu.br) on 2017-06-29T13:39:22Z No. of bitstreams: 1 Emerson de Souza Campos.pdf: 5716166 bytes, checksum: 5ece2fef286c7d6b282f34feaaf709e4 (MD5) / Made available in DSpace on 2017-06-29T13:39:22Z (GMT). No. of bitstreams: 1 Emerson de Souza Campos.pdf: 5716166 bytes, checksum: 5ece2fef286c7d6b282f34feaaf709e4 (MD5) Previous issue date: 2017-03-29 / Telecommunication systems are in constant development and the increasing demand of users and new services have enabled the emergence of new technologies. Planning has become indispensable due to the competitiveness and the large amount of financial resources involved. This work aims to propose and evaluate a genetic optimization algorithm for the planning of telecommunications networks. Because it is a combinatorial problem, the objective is to evaluate the advantages and disadvantages of the model based on the genetic algorithm. The graphs representing the networks were encoded in incidence matrices and the genetic operators of crossing and mutation were designed to act on matrices. MATLAB® software was used as a computational tool to implement the algorithms. The proposed model minimizes cost, considering the constraints of demand and technical capacity. The results found are compared to the published results in the SNDlib network instance library. The evaluation of the first version of the algorithm was based on a small PDH (Plesiochronous Digital Hierarchy) instance. The gain obtained in the cost of this network, compared to the solution presented in the library using linear programming with an arc-path approach, is 15.15%. In the second step, the algorithm for the optimization of a larger SDH (Synchronous Digital Hierarchy) network was applied. In this case, the need to hybridize the initial algorithm with a postoptimization algorithm was identified. The results obtained for the larger network were close to that of the SNDlib network library, although they were not better. The results found are promising because they approach similar solutions at a substantially shorter execution time than the SNDlib reference time. New research must be done so that the proposed algorithm can give good answers to large networks due to this being the reality of this area of research. / Os sistemas de telecomunicações estão em constante desenvolvimento e a demanda crescente de usuários e novos serviços possibilitaram o surgimento de novas tecnologias. O planejamento tornou-se indispensável devido à competividade e a grande quantidade de recursos financeiros envolvidos. Este trabalho visa propor e avaliar um algoritmo genético de otimização para o planejamento de redes de telecomunicações. Por se tratar de um problema combinatorial o objetivo é avaliar as vantagens e desvantagens do modelo com base no algoritmo genético. Os grafos que representam as redes foram codificados em matrizes de incidência e os operadores genéticos de cruzamento e mutação foram projetados para atuarem sobre matrizes. O software MATLAB® foi utilizado como ferramenta computacional para implementação dos algoritmos. O modelo proposto minimiza o custo, considerando as restrições de demanda e capacidade técnica. Os resultados encontrados são comparados com os resultados publicados na biblioteca de instâncias de rede SNDlib. A avaliação da primeira versão do algoritmo foi feita com base em uma instância PDH (Plesiochronous Digital Hierarchy), de pequeno porte. O ganho obtido no custo da rede, em relação à solução apresentada na biblioteca usando programação linear com abordagem arco-caminho, é de 15,15%. Na segunda etapa aplicou-se o algoritmo para otimização de uma rede SDH (Synchronous Digital Hierarchy), de maior porte. Identificou-se a necessidade de hibridizar o algoritmo inicial com um algoritmo de pós-otimização. Os resultados encontrados são promissores porque se aproximam de soluções similares em um tempo de execução substancialmente menor que o tempo de referência da SNDlib. Novas pesquisas devem ser feitas para que o algoritmo proposto possa dar boas respostas para redes de grande porte em função de ser esta a realidade desta área de pesquisa.
38

Agrupamento híbrido de dados utilizando algoritmos genéticos / Hybrid clustering techniques with genetic algorithms

Naldi, Murilo Coelho 16 October 2006 (has links)
Técnicas de Agrupamento vêm obtendo bons resultados quando utilizados em diversos problemas de análise de dados, como, por exemplo, a análise de dados de expressão gênica. Porém, uma mesma técnica de agrupamento utilizada em um mesmo conjunto de dados pode resultar em diferentes formas de agrupar esses dados, devido aos possíveis agrupamentos iniciais ou à utilização de diferentes valores para seus parâmetros livres. Assim, a obtenção de um bom agrupamento pode ser visto como um processo de otimização. Esse processo procura escolher bons agrupamentos iniciais e encontrar o melhor conjunto de valores para os parâmetros livres. Por serem métodos de busca global, Algoritmos Genéticos podem ser utilizados durante esse processo de otimização. O objetivo desse projeto de pesquisa é investigar a utilização de Técnicas de Agrupamento em conjunto com Algoritmos Genéticos para aprimorar a qualidade dos grupos encontrados por algoritmos de agrupamento, principalmente o k-médias. Esta investigação será realizada utilizando como aplicação a análise de dados de expressão gênica. Essa dissertação de mestrado apresenta uma revisão bibliográfica sobre os temas abordados no projeto, a descrição da metodologia utilizada, seu desenvolvimento e uma análise dos resultados obtidos. / Clustering techniques have been obtaining good results when used in several data analysis problems, like, for example, gene expression data analysis. However, the same clustering technique used for the same data set can result in different ways of clustering the data, due to the possible initial clustering or the use of different values for the free parameters. Thus, the obtainment of a good clustering can be seen as an optimization process. This process tries to obtain good clustering by selecting the best values for the free parameters. For being global search methods, Genetic Algorithms have been successfully used during the optimization process. The goal of this research project is to investigate the use of clustering techniques together with Genetic Algorithms to improve the quality of the clusters found by clustering algorithms, mainly the k-means. This investigation was carried out using as application the analysis of gene expression data, a Bioinformatics problem. This dissertation presents a bibliographic review of the issues covered in the project, the description of the methodology followed, its development and an analysis of the results obtained.
39

Implementação de um framework de computação evolutiva multi-objetivo para predição Ab Initio da estrutura terciária de proteínas / Implementation of multi-objective evolutionary framework for Ab Initio protein structure prediction

Faccioli, Rodrigo Antonio 24 August 2012 (has links)
A demanda criada pelos estudos biológicos resultou para predição da estrutura terciária de proteínas ser uma alternativa, uma vez que menos de 1% das sequências conhecidas possuem sua estrutura terciária determinada experimentalmente. As predições Ab initio foca nas funções baseadas da física, a qual se trata apenas das informações providas pela sequência primária. Por consequência, um espaço de busca com muitos mínimos locais ótimos deve ser pesquisado. Este cenário complexo evidencia uma carência de algoritmos eficientes para este espaço, tornando-se assim o principal obstáculo para este tipo de predição. A optimização Multi-Objetiva, principalmente os Algoritmos Evolutivos, vem sendo aplicados na predição da estrutura terciária já que na mesma se envolve um compromisso entre os objetivos. Este trabalho apresenta o framework ProtPred-PEO-GROMACS, ou simplesmente 3PG, que não somente faz predições com a mesma acurácia encontrada na literatura, mas também, permite investigar a predição por meio da manipulação de combinações de objetivos, tanto no aspecto energético quanto no estrutural. Além disso, o 3PG facilita a implementação de novas opções, métodos de análises e também novos algoritmos evolutivos. A fim de salientar a capacidade do 3PG, foi então discorrida uma comparação entre os algoritmos NSGA-II e SPEA2 aplicados na predição Ab initio da estrutura terciária de proteínas em seis combinações de objetivos. Ademais, o uso da técnica de refinamento por Dinâmica Molecular é avaliado. Os resultados foram adequados quando comparado com outras técnicas de predições: Algoritmos Evolutivo Multi-Objetivo, Replica Exchange Molecular Dynamics, PEP-FOLD e Folding@Home. / The demand created by biological studies resulted the structure prediction as an alternative, since less than 1% of the known protein primary sequences have their 3D structure experimentally determined. Ab initio predictions focus on physics-based functions, which regard only information about the primary sequence. As a consequence, a search space with several local optima must be sampled, leading to insucient sampling of this space, which is the main hindrance towards better predictions. Multi-Objective Optimization approaches, particularly the Evolutionary Algorithms, have been applied in protein structure prediction as it involves a compromise among conicting objectives. In this paper we present the ProtPred-PEO-GROMACS framework, or 3PG, which can not only make protein structure predictions with the same accuracy standards as those found in the literature, but also allows the study of protein structures by handling several energetic and structural objective combinations. Moreover, the 3PG framework facilitates the fast implementation of new objective options, method analysis and even new evolutionary algorithms. In this study, we perform a comparison between the NSGA-II and SPEA2 algorithms applied on six dierent combinations of objectives to the protein structure. Besides, the use of Molecular Dynamics simulations as a renement technique is assessed. The results were suitable when comparated with other prediction methodologies, such as: Multi-Objective Evolutionary Algorithms, Replica Exchange Molecular Dynamics, PEP-FOLD and Folding@Home.
40

Um algoritmo evolutivo rápido para agrupamento de dados

Alves, Vinícius Santino 23 February 2007 (has links)
Made available in DSpace on 2015-02-04T21:45:28Z (GMT). No. of bitstreams: 1 Vinicius Alves.pdf: 740567 bytes, checksum: bf37e8ad38e43e90f7ff2432e96b31c1 (MD5) Previous issue date: 2007-02-23 / A atividade de agrupamento de dados (obter uma partição que represente a estrutura de um conjunto de objetos) é de vasta aplicabilidade e importância nos dias de hoje. Ferramentas de agrupamento de dados são aplicadas em diversos domínios: inteligência artificial, reconhecimento de padrões, economia, ecologia, psiquiatria, marketing, entre outros. Algoritmos evolutivos são ferramentas inspiradas na teoria da evolução das espécies que são, em geral, aplicados a problemas de otimização. Tais algoritmos são capazes de encontrar boas soluções (subótimas) em tempo computacional razoável e, por esta razão, eles são utilizados desde a década de 60 como opção para a solução de problemas complexos. Quando considerado como um problema de otimização combinatória, a atividade de agrupamento de dados tem espaço de busca de complexidade não polinomial. Tal complexidade tem estimulado o desenvolvimento de ferramentas de agrupamento de dados utilizando algoritmos evolutivos. Nesta dissertação apresenta-se o novo Algoritmo Evolutivo Rápido para Agrupamento de Dados (Fast- EAC), uma ferramenta capaz de estimar o número ótimo de grupos para um determinado conjunto de dados e a respectiva partição dos dados utilizando a abordagem de algoritmos evolutivos. Além da proposta do novo Fast-EAC, são contribuições desse trabalho a proposta de uma nova metodologia de avaliação para algoritmos evolutivos aplicados a agrupamento de dados e um novo índice externo de avaliação de partições, o Rand Index parcial por grupos.

Page generated in 0.0542 seconds