Spelling suggestions: "subject:"alostérico"" "subject:"histérica""
1 |
Modulación del receptor nicotínico de acetilcolina por lidocaína y análogos estructuralesAlberola-Die, Armando 02 March 2012 (has links)
No description available.
|
2 |
Mecanismos de Modulación de Receptores Nicotínicos por Anestésicos Locales con Grupos AminoCobo Velacoracho, Raúl 09 September 2019 (has links)
La tetracaína (Ttc), cuyas moléculas en solución fisiológica se encuentran mayoritariamente (97 %) en forma protonada, bloquea la corriente (IACh) evocada por acetilcolina (ACh) en ovocitos a los que se ha microtrasplantado receptores nicotínicos de acetilcolina (nAChRs) de la electroplaca de Torpedo marmorata. El bloqueo del nAChRm por Ttc fue muy potente, en el rango submicromolar (IC50= 0.5 μM) y reversible, recuperándose las respuestas a valores control tras un periodo de varios minutos. A concentraciones tan bajas como 0.1 μM, la Ttc ejerció un bloqueo que fue dependiente de voltaje, indicando que ejerce un bloqueo a canal abierto. El sitio de unión se pudo determinar en el interior del canal mediante técnicas de acoplamiento molecular. A concentraciones mayores (0.7 μM) se pudo observar un mecanismo de bloqueo distinto, a canal cerrado, que es independiente de voltaje y que se puede explicar por la unión de la Ttc a lugares situados en el ECD del nAChRm, que fueron determinados en los experimentos de docking virtual. Además, a esta concentración la Ttc aceleró la cinética de desensibilización de la IACh, cuando las células se mantuvieron en presencia sostenida del agonista. Esta se evocó cuando se co-aplicó la Ttc junto a la ACh a potenciales negativos. Por el contrario, cuando solamente se pre-aplicó la Ttc (aplicación previa a la de ACh), o cuando se co-aplicó a potenciales positivos, no se modificó la cinética de desensibilización, a pesar de que sí hubo una cierta inhibición de la IACh. Estos experimentos permitieron determinar que el sitio de unión de la Ttc que acelera la desensibilización se encuentra en el interior del canal. El ensayo de docking permitió localizar los residuos a los que su une la Ttc dentro del canal a altas concentraciones (con menor afinidad), que es más superficial que el implicado en el bloqueo a canal abierto. El lugar de unión determinado por anclaje virtual incluye la interacción de Ttc con αE262, γN224, γK271, y γE274, residuos que han sido previamente involucrados en el proceso de activación y desensibilización (Bouzat y cols., 2008; Forman y cols., 2007). El otro anestésico local (LA) estudiado, la benzocaína (Bzc), no posee carga al pH al que se efectúan los registros electrofisiológicos. La Bzc, al igual que la Ttc, inhibió la IACh, pero con una potencia menor, en el rango submilimolar y, a diferencia de la Ttc, su bloqueo fue independiente de voltaje. A pesar de mediar un bloqueo independiente de voltaje, la Bzc, evoca una corriente de rebote (IRb), similar a la que median moléculas que ejercen un bloqueo de canal abierto, sugiriendo que la Bzc podría estar uniéndose en el interior del canal. Otro efecto destacado de la Bzc sobre el nAChRms fue la aceleración de la desensibilización, haciéndola marcadamente más rápida incluso a potenciales positivos (a diferencia del efecto mediado por la Ttc). Además, se observó que, tras su pre-aplicación, la cinética de activación de la IACh se enlenteció y hubo un bloqueo de nAChRs, a canal cerrado, cuya recuperación fue especialmente lenta. Los efectos de ambos LAs fueron muy diferentes sobre los GABAAR. Así, la Ttc apenas tuvo efectos sobre este receptor, incluso a una concentración 10 veces superior a la IC50 determinada para el nAChRm. Por el contrario, la Bzc, aplicada a concentraciones similares a las que inhiben la IACh, aumentó la desensibilización y evocó una IRb similar a la observada en los nAChRs. Adicionalmente, la Bzc tuvo efectos sobre otros canales, como el ClC-0 y el CaCC. En relación con la Bzc, es interesante destacar que debido a su estructura química tiene una muy baja solubilidad al agua y, por tanto, debe solubilizarse en solventes como el etanol (EtOH) o el DMSO. Debido a que estos solventes pueden no ser totalmente inertes se probaron, en las mismas condiciones experimentales. No observándose efectos sobre los nAChRms.
|
3 |
USING RECOMBINANT HUMAN CARBAMOYL PHOSPHATE SYNTHETASE 1 (CPS1) FOR STUDYING THIS ENZYME'S FUNCTION, REGULATION, PATHOLOGY AND STRUCTUREDíez Fernández, Carmen 09 July 2015 (has links)
Tesis por compendio / [EN] Carbamoyl phosphate synthetase 1 (CPS1), a 1462-residue mitochondrial enzyme, catalyzes the entry of ammonia into the urea cycle, which converts ammonia, the neurotoxic waste product of protein catabolism, into barely toxic urea. The urea cycle inborn error and rare disease CPS1 deficiency (CPS1D) is inherited with mendelian autosomal recessive inheritance, being due to CPS1 gene mutations (>200 mutations reported), and causing life-threatening hyperammonemia.
We have produced recombinantly human CPS1 (hCPS1) in a baculovirus/insect cell expression system, isolating the enzyme in active and highly purified form, in massive amounts. This has allowed enzyme crystallization for structural studies by X-ray diffraction (an off-shoot of the present studies). This hCPS1 production system allows site-directed mutagenesis and enzyme characterization as catalyst (activity, kinetics) and as protein (stability, aggregation state, domain composition). We have revealed previously unexplored traits of hCPS1 such as its domain composition, the ability of glycerol to replace the natural and essential CPS1 activator N-acetyl-L-glutamate (NAG), and the hCPS1 protection (chemical chaperoning) by NAG and by its pharmacological analog N-carbamyl-L-glutamate (NCG).
We have exploited this system to explore the effects on the activity, kinetic parameters and stability/folding of the enzyme, and to test the disease-causing nature, of mutations identified in patients with CPS1 deficiency (CPS1D). These results, supplemented with those obtained with other non-clinical mutations, have provided novel information on the functions of three non-catalytic domains of CPS1.
We have introduced three CPS1D-associated mutations and one trivial polymorphism in the glutaminase-like domain of CPS1, supporting a stabilizing and an activity-enhancing function of this non-catalytic domain. Two mutations introduced into the bicarbonate phosphorylation domain have shed light on bicarbonate binding and have directly confirmed the importance of this domain for NAG binding to the distant (in the sequence) C-terminal CPS1 domain. The introduction of 18 CPS1D-associated missense mutations mapping in a clinically highly eloquent central non-catalytic domain have proven the disease-causing nature of most of these mutations while showing that in most of the cases they trigger enzyme misfolding and/or destabilization. These results, by proving an important role of this domain in the structural integration of the multidomain CPS1 protein, have led us to call this domain the Integrating Domain.
Finally, we have examined the effects of eight CPS1D-associated mutations, of one trivial polymorphism and of five non-clinical mutations, all of them mapping in the C-terminal domain of the enzyme where NAG binds, whereas we have re-analyzed prior results with another four clinical and five non-clinical mutations affecting this domain. We have largely confirmed the pathogenic nature of the clinical mutations, predominantly because of decreased activity, in many cases due to hampered NAG binding. A few mutations had substantial negative effects on CPS1 stability/folding. Our analysis reveals that NAG activation begins with a movement of the final part of the ß4-¿4 loop of the NAG site. Transmission of the activating signal to the phosphorylation domains involves helix ¿4 from this domain and is possibly transmitted by the mutually homologous loops 1313-1332 and 778-787 (figures are residue numbers) belonging, respectively, to the carbamate and bicarbonate phosphorylation domains. These two homologous loops are called from here on Signal Transmission Loops. / [ES] La carbamil fosfato sintetasa 1 (CPS1), una enzima mitocondrial, cataliza la entrada del amonio en el ciclo de la urea, que convierte esta neurotoxina derivada del catabolismo de las proteínas en urea, mucho menos tóxica. El déficit de CPS1 (CPS1D) es un error innato del ciclo de la urea, una enfermedad rara autosómica recesiva, que se debe a mutaciones en el gen CPS1 (>200 mutaciones descritas) y que cursa con hiperamonemia.
Hemos producido CPS1 humana recombinante (hCPS1) en un sistema de expresión de células de insecto y baculovirus, y la hemos aislado en forma activa, muy pura y en cantidad elevada. Este sistema de producción de hCPS1 permite la realización de mutagénesis dirigida y la caracterización de la enzima como catalizador (actividad, cinética) y como proteína (estabilidad, estado de agregación y composición de dominios). Hemos revelado características de la hCPS1 antes no exploradas como es la composición de dominios, la capacidad que tiene el glicerol para reemplazar al activador natural y esencial de la CPS1, N-acetil-L-glutamato (NAG), y la protección de la hCPS1 por NAG y por su análogo farmacológico N-carbamil-L-glutamato (NCG) (chaperonas químicas).
Hemos utilizado este sistema para explorar los efectos en actividad, parámetros cinéticos y estabilidad/plegamiento de la enzima, y para comprobar la naturaleza patogénica de mutaciones identificadas en pacientes con CPS1D. Estos resultados, junto con los obtenidos con otras mutaciones no clínicas, han aportado información novedosa sobre tres de los dominios no catalíticos de CPS1.
Las observaciones realizadas tras introducir en el dominio de tipo glutaminasa de la enzima tres mutaciones asociadas a CPS1D y un polimorfismo trivial, apoyan la contribución de este dominio no catalítico a la estabilidad y a aumentar la actividad de la enzima. Dos mutaciones introducidas en el dominio de fosforilación de bicarbonato han arrojado luz sobre el modo de unión del bicarbonato (un sustrato). Los resultados de estas mutaciones también han confirmado la contribución de este dominio para la unión de NAG, cuyo sitio de unión se encuentra en el dominio C-terminal de CPS1, bastante alejado (en la secuencia) del dominio de fosforilación de bicarbonato. Además, hemos introducido 18 mutaciones de cambio de sentido asociadas a CPS1D, las cuales están localizadas en un dominio no catalítico, central y de elevada elocuencia clínica. Estos resultados han demostrado la naturaleza patogénica de estas mutaciones, ya que en la mayoría de los casos estas mutaciones producen un mal plegamiento o/y desestabilización de la enzima. Debido a que estos resultados han puesto de manifiesto el importante papel de este dominio en la integración estructural de la proteína multidominio CPS1, lo hemos llamado Dominio Integrador.
Finalmente, hemos examinado los efectos de 8 mutaciones asociadas a CPS1D, de un polimorfismo trivial y de 5 mutaciones no clínicas, todas localizadas en el dominio C-terminal de la enzima, donde se une NAG. Además, hemos reanalizado resultados anteriores con otras 4 mutaciones clínicas y 5 no clínicas afectando a este dominio. Hemos confirmado el carácter patogénico de las mutaciones clínicas, las cuales predominantemente causan una disminución en la actividad enzimática, en muchos casos debida a que la unión de NAG se encuentra obstaculizada. Unas pocas mutaciones mostraron efectos negativos en la estabilidad/plegamiento de CPS1. Nuestros análisis revelan que la activación por el NAG empieza con un movimiento de la parte final del bucle ß4-¿4 del sitio de NAG. La transmisión de la señal activadora a los dominios de fosforilación implica a la hélice ¿4 de este dominio y posiblemente se transmite a través de los bucles homólogos 1313-1332 y 778-787 (numeración de residuos) pertenecientes, respectivamente, a los dominios de fosforilación de carbamato y bicarbonato. Por ello, hemos llamado a ambos bucles Bucles de / [CA] La carbamil fosfat sintetasa 1 (CPS1), un enzim mitocondrial, catalitza l'entrada d'amoni en el cicle de la urea, que convertix l'amoni, producte neurotòxic del catabolisme de les proteïnes, en urea, una molècula molt poc tòxica. El dèficit de CPS1 (CPS1D) és un error innat del cicle de la urea, una malaltia rara autosòmica recessiva, que es deu a mutacions en el gen CPS1 (>200 mutacions descrites) i que cursa amb hiperamonièmia.
Hem produït CPS1 humana recombinant (hCPS1) en un sistema d'expressió de cèl·lules d'insecte i baculovirus, i l'hem aïllada en forma activa, molt pura i en gran quantitat. Això ha permés la cristal·lització de l'enzim per a estudis estructurals amb difracció de raios-X (treball no inclòs en esta tesi Aquest sistema de producció de hCPS1 permet la realització de mutagènesi dirigida i la caracterització de l'enzim com a catalitzador (activitat, cinètica) i com a proteïna (estabilitat, estat d'agregació i composició de dominis). Hem revelat característiques de la hCPS1 no explorades abans com és la composició de dominis, la capacitat que té el glicerol per a reemplaçar l'activador natural i essencial de CPS1, N-acetil-L-glutamat (NAG), i la protecció de la hCPS1 per NAG i pel seu anàleg farmacològic N-carbamil-L-glutamat (NCG) (xaperones químiques) .
Hem utilitzat aquest sistema per a explorar els efectes en l'activitat, els paràmetres cinètics i l'estabilitat/plegament de l'enzim, i per a comprovar la naturalesa patogènica de mutacions identificades en pacients amb CPS1D. Aquestos resultats, junt amb els obtinguts amb altres mutacions no clíniques, han aportat informació nova sobre tres dels dominis no catalítics de la CPS1.
Les observacions, després d'introduir tres mutacions associades a CPS1D i un polimorfisme trivial en el domini tipus glutaminasa de CPS1, recolzen la contribució d'aquest domini no catalític a l'estabilitat i a l'optimització de l'activitat enzimàtica. Dues mutacions introduïdes en el domini de fosforilació de bicarbonat han esclarit el mode d'unió de bicarbonat. Els resultats d'aquestes mutacions també han confirmat la contribució d'aquest domini per a la unió de NAG, el lloc d'unió de la qual es troba en el domini C-terminal de CPS1, prou allunyat (en la seqüència) del domini de fosforilació de bicarbonat. A més, hem introduït 18 mutacions de canvi de sentit associades a CPS1D, les quals estan localitzades en un domini no catalític, central i d'elevada eloqüència clínica. Aquestos resultats han demostrat la naturalesa patogènica d'aquestes mutacions, ja que, en la majoria dels casos produïxen un mal plegament o/i desestabilització de l'enzim. Pel fet que aquestos resultats han posat de manifest l'important paper d'aquest domini en la integració estructural de la proteïna multidomini CPS1, l'hem anomenat Domini Integrador.
Finalment, hem examinat els efectes de huit mutacions associades a CPS1D, un polimorfisme trivial i cinc mutacions no clíniques, totes elles localitzades en el domini C-terminal de l'enzim, on s'unix NAG. A més, hem reanalitzat resultats anteriors amb altres quatre mutacions clíniques i cinc no clíniques que afecten aquest domini. Hem confirmat el caràcter patogènic de les mutacions clíniques, les quals predominantment causen una disminució en l'activitat enzimàtica, en molts casos pel fet que la unió de NAG es troba obstaculitzada. Unes poques mutacions van mostrar efectes negatius substancials en l'estabilitat/plegament de CPS1. Les nostres anàlisis revelen que l'activació de NAG comença amb un moviment de la part final del bucle ß4-¿4 del lloc de NAG. La transmissió del senyal activadora als dominis de fosforilació involucra l'hèlix ¿4 d'aquest domini i es transmet, possiblement, a través dels bucles homòlegs 1313-1332 i 778-787 (numeració dels residus), pertanyents, respectivament, als dominis de fosforilació de carbamato i bicarbonat. Per això, hem anomenat a ambd / Díez Fernández, C. (2015). USING RECOMBINANT HUMAN CARBAMOYL PHOSPHATE SYNTHETASE 1 (CPS1) FOR STUDYING THIS ENZYME'S FUNCTION, REGULATION, PATHOLOGY AND STRUCTURE [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52855 / Compendio
|
Page generated in 0.3243 seconds