• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring women's complex relationship with political violence: A study of the weathermen, radical feminism and the new left

Churchill, Lindsey Blake 01 June 2005 (has links)
In this thesis I use the radical, pro-violent organization the Weathermen as a framework to examine women and feminisms complex relationships with violence. My thesis attempts to show the many belief systems that second wave feminists possessed concerning the role(s) of women and violence in revolutionary organizations. Hence, by using the Weathermen as a framework, I discuss various feminist essentialist and pacifist critiques of violence. I also include an analysis of feminists who, similar to the Weathermen, embraced political violence. For example, radical feminists Robin Morgan and Jane Alpert criticized the Weathermens violent tactics while other feminists such as Ti-Grace Atkinson and Valerie Solanas advocated that women pick up the gun in order to destroy patriarchal society. In addition, I analyze the stereotypes of the violent female, which have often been supported by feminists and non-feminists alike. Thus, the stereotyped nature of the violent female does not allow for the complexities that accompany the many reasons why women commit politically motivated crimes. Understanding the role women played in the Weathermen is an important task because womens roles and representation in radical, New Left organizations have often been ignored, overlooked and reproduced by revisionist analyses. Though revolutionary groups from the sixties and seventies were important and progressive in many ways, my thesis will examine the phenomenon of silencing womens voices in these organizations and how this silencing inspired women to find voice in their own movements. Furthermore, I am also interested in radical second wave feminists belief systems and histories concerning violence, particularly since they have rarely been delved into by historians or feminist researchers.
2

Investigation of methods used to predict the heat release rate and enclosure temperatures during mattress fires

Threlfall, Todd 05 September 2005
Fires in buildings ranging in size from small residential houses to large office buildings and sports stadiums pose significant threats to human safety. Many advances have been made in the area of fire behaviour modeling and have lead to much safer, and more efficient fire protection engineering designs, saving countless lives. Fire, however, is still a difficult phenomenon to accurately model and the most important quantity used to describe a fire is the heat (energy) release rate (HRR). Predictions of the fire hazard posed by mattresses, using relatively simple modeling techniques, were investigated in this research work and compared to full-scale experimental results. Specifically, several common methods of predicting the HRR from a mattress fire were examined. Current spatial separation guidelines, which exist in order to mitigate fire spread between buildings, were used to predict radiation heat flux levels emitted by a burning building and compared to experimental results measured in the field. Enclosure ceiling temperatures, predicted using the Alpert temperature correlation, and average hot gas layer temperature predictions were also compared to experimental results. Results from this work indicate that the t-squared fire heat release rate modeling technique combined with the common Alpert ceiling temperature correlation, provide a reasonable prediction of real-life fire temperatures as results within 30% were obtained. The cone calorimeter was also found to be a useful tool in the prediction of full-scale fire behaviour and the guidelines used for spatial separation calculations were found to predict the radiant heat flux emitted by a burning building reasonably well.
3

Investigation of methods used to predict the heat release rate and enclosure temperatures during mattress fires

Threlfall, Todd 05 September 2005 (has links)
Fires in buildings ranging in size from small residential houses to large office buildings and sports stadiums pose significant threats to human safety. Many advances have been made in the area of fire behaviour modeling and have lead to much safer, and more efficient fire protection engineering designs, saving countless lives. Fire, however, is still a difficult phenomenon to accurately model and the most important quantity used to describe a fire is the heat (energy) release rate (HRR). Predictions of the fire hazard posed by mattresses, using relatively simple modeling techniques, were investigated in this research work and compared to full-scale experimental results. Specifically, several common methods of predicting the HRR from a mattress fire were examined. Current spatial separation guidelines, which exist in order to mitigate fire spread between buildings, were used to predict radiation heat flux levels emitted by a burning building and compared to experimental results measured in the field. Enclosure ceiling temperatures, predicted using the Alpert temperature correlation, and average hot gas layer temperature predictions were also compared to experimental results. Results from this work indicate that the t-squared fire heat release rate modeling technique combined with the common Alpert ceiling temperature correlation, provide a reasonable prediction of real-life fire temperatures as results within 30% were obtained. The cone calorimeter was also found to be a useful tool in the prediction of full-scale fire behaviour and the guidelines used for spatial separation calculations were found to predict the radiant heat flux emitted by a burning building reasonably well.
4

Coupled-Cluster in Real Space

Kottmann, Jakob Siegfried 24 August 2018 (has links)
In dieser Arbeit werden Algorithmen für die Berechnung elektronischer Korrelations- und Anregungsenergien mittels der Coupled-Cluster Methode auf adaptiven Gittern entwickelt und implementiert. Die jeweiligen Funktionen und Operatoren werden adaptiv durch Multiskalenanalyse dargestellt, was eine Basissatz unabängige Beschreibung mit kontrollierter numerischer Genauigkeit ermöglicht. Gleichungen für die Coupled-Cluster Methode werden in einem verallgemeinerten Rahmen, unabhängig von virtuellen Orbitalen und globalen Basissätzen, neu formuliert. Hierzu werden die amplitudengewichteten Anregungen in virtuelle Orbitale ersetzt durch Anregungen in n-Elektronenfunktionen, welche durch Gleichungen im n-Elektronen Ortsraum bestimmt sind. Die erhaltenen Gleichungen können, analog zur Basissatz abh¨angigen Form, mit leicht angepasster Interpretation diagrammatisch dargestellt werden. Aufgrund des singulären Coulomb Potentials werden die Arbeitsgleichungen mit einem explizit korrelierten Ansatz regularisiert. Coupled-Cluster singles mit genäherten doubles (CC2) und ähnliche Modelle werden, für geschlossenschalige Systeme und in regularisierter Form, in die MADNESS Bibliothek (eine allgemeine Bibliothek zur Darstellung von Funktionen und Operatoren mittels Multiskalenanalyse) implementiert. Mit der vorgestellten Methode können elektronische CC2 Paarkorrelationsenergien und Anregungsenergien mit bestimmter numerischer Genauigkeit unabhängig von globalen Basissätzen berechnet werden, was anhand von kleinen Molekülen verifiziert wird / In this work algorithms for the computation of electronic correlation and excitation energies with the Coupled-Cluster method on adaptive grids are developed and implemented. The corresponding functions and operators are adaptively represented with multiresolution analysis allowing a basis-set independent description with controlled numerical accuracy. Equations for the coupled-cluster model are reformulated in a generalized framework independent of virtual orbitals and global basis-sets. For this, the amplitude weighted excitations into virtuals are replaced by excitations into n-electron functions which are determined by projected equations in the n-electron position space. The resulting equations can be represented diagrammatically analogous to basis-set dependent approaches with slightly adjusted rules of interpretation. Due to the singular Coulomb potential, the working equations are regularized with an explicitly correlated ansatz. Coupled-cluster singles with approximate doubles (CC2) and similar models are implemented for closed-shell systems and in regularized form into the MADNESS library (a general library for the representation of functions and operators with multiresolution analysis). With the presented approach electronic CC2 pair-correlation energies and excitation energies can be computed with definite numerical accuracy and without dependence on global basis sets, which is verified on small molecules.

Page generated in 0.0298 seconds