Spelling suggestions: "subject:"alternative full vehicle"" "subject:"alternative fue vehicle""
1 |
Possibilities of Alternative Vehicle Fuels : a literature reviewZhang, Taoju January 2015 (has links)
Historically, gasoline and diesel have been used as vehicle fuels for a long time. But the decline of oil supply and unstable oil price drive people to find alternative energy for vehicle fuel. Alternative energy solutions may shift energy consumption to less carbon, less pollutions and provide more energy diversity. These issues are investigated in the present literature review. The first part of the thesis introduces different kinds of alternative energy for vehicles, such as biofuel, natural gas, hydrogen, liquefied petrol gas, electricity and compressed air. The presentations includes their utilization, production, environment effect, running performance, fuel property, market share, running and investigate cost and production barriers. The second part of the thesis work compares the properties of the alternative fuels and discusses the advantages and drawbacks of different types of fuel energies. Compared with traditional fuels, alternative fuels have superiority in environment impact, sustainability and energy efficiency. Some of them have been used in reality and show a potential as future fuels. The author found that natural gas and liquefied petrol gas have low running costs, better environment performance and acceptable running range, and thus are able to substitute conventional fuels in the short term. Biofuel has better sustainability than gasoline. It will probably become more sustainable and cost effective in the mid-term period. Electricity can also become a future fuel in mid-term period since it has excellent emission performance and low running costs. Hydrogen is expected to substitute conversional fuels in the long term due to high investment costs and current unsustainable production pathway of the latter. The compressed air turned out not suitable for substituting conventional fuels because of poor efficiency and running range performance.
|
2 |
Consumers’ Willingness to Pay for Alternative Fueled Rental Cars : A Choice Experiment Study in Luleå, SwedenBjörklund, Emma January 2018 (has links)
Sweden, as a country, has set the goal to achieve a fossil independent vehicle fleet by 2030, which means that Sweden has to reduce its CO2 emissions by 80 percent. Sources argue that the regulations and different implementations that have been done are not enough to reach the 80 percent reduction in time. The purpose of this paper is to analyze consumers’ preferences towards alternative fuel vehicles by estimating the willingness to pay for rental cars in Sweden. The paper also tries to define the explanatory factors for choosing an alternative fuel vehicle. The data used in this thesis was collected through a choice experiment questionnaire that was distributed to employees and students at Luleå University of Technology. The study concludes that respondents have a willingness to pay at approximately SEK 280 extra to rent and use an electric rental car.
|
3 |
The Initial Deployment of Electric Vehicle Service Equipment : Case study: Green Highway Region, E14 from Sundsvall in Sweden to Trondheim in NorwayDaniali, Iran January 2015 (has links)
Abstract Electric Vehicles (EVs) are considered a more sustainable alternative vehicle because of their efficient electric motor when compared to internal combustion engines (ICE), and thus help to mitigate environmental problems and reduce fossil fuel dependency. In or-der to support drivers of plug-in hybrid electrical vehicles (PEVs), the installation and adequate distribution of Electric Vehicle Service Equipment (EVSE) is a major factor. The availability of EVSE is a vital requirement in order to charge the vehicle’s battery pack through connection to the electricity grid. This thesis evaluates the likely distribu-tion of a sufficient number of charging stations, measured as the demand of EVSE, for initial deployment in the E14 highway. This highway is also known as the Green High-way region, where a plan has been outlined with the aim to create a fleet of 15% EVs in the area by 2020.In order to model EVSE distribution, the first step was to complete a survey in 2012 on the population density and location of cities, along with the location of already estab-lished charging station locations on the Green Highway. The survey was done with ge-ography information survey (GIS) software. The second step was to create a map of the region. Based on the map, the initial estimate of EVSE locations on the Green Highway project plan was analyzed, as the third step. This was used as an initial analysis. The forth step was to use the location of current gasoline stations to provide as alternative pattern for the EVSE sites.It was observed that the network of gasoline stations correlates positively with population density. Through using these stations, the optimal location of the EVSEs was proposed. However, the model results do not provide for sufficient placement of EVSE sites where the population density is very low. In order to assess the different potential options, it was necessary to create analytical models in Arc-GIS, in which buffer zones were created with a variable size of 10, 15, 20 and 31 miles. This permitted allocation of a geographical area to estimate the optimum sites for charging stations. The resultsiiishowed that for a buffer zone of 10 miles, 28 charging stations were calculated, using buffer zone of 15 miles gives 18 stations, and a buffer zone of 20 miles results in 13 charging station sites. Notably, the estimate of the 20-mile buffer zone gives the same results as for the 50 km (31 miles) buffer zone for residential areas along E14. Therefore, the results show that the optimal design is to deploy 14 fast charging stations with three-phase DC, or 14 fast charging stations with three-phase AC, installed adjacent to the E14 road.
|
4 |
Location of Refueling Stations for Alternative Fuel Vehicles Considering Driver Deviation Behavior and Uneven Consumer Demand: Model, Heuristics, and GISJanuary 2010 (has links)
abstract: Concerns about Peak Oil, political instability in the Middle East, health hazards, and greenhouse gas emissions of fossil fuels have stimulated interests in alternative fuels such as biofuels, natural gas, electricity, and hydrogen. Alternative fuels are expected to play an important role in a transition to a sustainable transportation system. One of the major barriers to the success of alternative-fuel vehicles (AFV) is the lack of infrastructure for producing, distributing, and delivering alternative fuels. Efficient methods that locate alternative-fuel refueling stations are essential in accelerating the advent of a new energy economy. The objectives of this research are to develop a location model and a Spatial Decision Support System (SDSS) that aims to support the decision of developing initial alternative-fuel stations. The main focus of this research is the development of a location model for siting alt-fuel refueling stations considering not only the limited driving range of AFVs but also the necessary deviations that drivers are likely to make from their shortest paths in order to refuel their AFVs when the refueling station network is sparse. To add reality and applicability of the model, the research is extended to include the development of efficient heuristic algorithms, the development of a method to incorporate AFV demand estimates into OD flow volumes, and the development of a prototype SDSS. The model and methods are tested on real-world road network data from state of Florida. The Deviation-Flow Refueling Location Model (DFRLM) locates facilities to maximize the total flows refueled on deviation paths. The flow volume is assumed to be decreasing as the deviation increases. Test results indicate that the specification of the maximum allowable deviation and specific deviation penalty functional form do have a measurable effect on the optimal locations of facilities and objective function values as well. The heuristics (greedy-adding and greedy-adding with substitution) developed here have been identified efficient in solving the DFRLM while AFV demand has a minor effect on the optimal facility locations. The prototype SDSS identifies strategic station locations by providing flexibility in combining various AFV demand scenarios. This research contributes to the literature by enhancing flow-based location models for locating alternative-fuel stations in four dimensions: (1) drivers' deviations from their shortest paths, (2) efficient solution approaches for the deviation problem, (3) incorporation of geographically uneven alt-fuel vehicle demand estimates into path-based origin-destination flow data, and (4) integration into an SDSS to help decision makers by providing solutions and insights into developing alt-fuel stations. / Dissertation/Thesis / Ph.D. Geography 2010
|
5 |
The Transition to Alternative Fuel Vehicles (AFVs): an Analysis of Early Adopters of Natural Gas Vehicles and Implications for Refueling Infrastructure Location MethodsJanuary 2015 (has links)
abstract: Alternative fuel vehicles (AFVs) have seen increased attention as a way to reduce reliance on petroleum for transportation, but adoption rates lag behind conventional vehicles. One crucial barrier to their proliferation is the lack of a convenient refueling infrastructure, and there is not a consensus on how to locate initial stations. Some approaches recommend placing stations near where early adopters live. An alternate group of methods places stations along busy travel routes that drivers from across the metropolitan area traverse each day. To assess which theoretical approach is most appropriate, drivers of compressed natural gas (CNG) vehicles in Southern California were surveyed at stations while they refueled. Through GIS analysis, results demonstrate that respondents refueled on the way between their origins and destinations ten times more often than they refueled near their home, when no station satisfied both criteria. Freeway interchanges, which carry high daily passing traffic volumes in metropolitan areas, can be appropriate locations for initial stations based on these results. Stations cannot actually be built directly at these interchange sites, so suitable locations on nearby street networks must be chosen. A network GIS method is developed to assess street network locations' ability to capture all traffic passing through 72 interchanges in greater Los Angeles, using deviation from a driver's shortest path as the metric to assess a candidate site's suitability. There is variation in the ability of these locations to capture passing traffic both within and across interchanges, but only 7% of sites near interchanges can conveniently capture all travel directions passing through the interchange, indicating that an ad hoc station location strategy is unlikely to succeed. Surveys were then conducted at CNG stations near freeway interchanges to assess how drivers perceive and access refueling stations in these environments. Through comparative analysis of drivers' perceptions of stations, consideration of their choice sets, and the observed frequency of the use of a freeway to both access and leave these stations, results indicate that initial AFV stations near freeway interchanges can play an important role in regional AFV infrastructure. / Dissertation/Thesis / Doctoral Dissertation Geography 2015
|
6 |
A Threshold Coverage Flow-Refueling Location Model to Build a Critical Mass of Alternative-Fuel StationsJanuary 2015 (has links)
abstract: In order to address concerns about the dominance of petroleum-fueled vehicles, the transition to alternative-fueled counterparts is urgently needed. Top barriers preventing the widespread diffusion of alternative-fuel vehicles (AFV) are the limited range and the scarcity of refueling or recharging infrastructures in convenient locations. Researchers have been developing models for optimally locating refueling facilities for range-limited vehicles, and recently a strategy has emerged to cluster refueling stations to encourage consumers to purchase alternative-fuel vehicles by building a critical mass of stations. However, clustering approaches have not yet been developed based on flow-based demand. This study proposes a Threshold Coverage extension to the original Flow Refueling Location Model (FRLM). The new model optimally locates p refueling stations on a network so as to maximize the weighted number of origin zones whose refuelable outbound round trips exceed a given threshold, thus to build critical mass based on flow-based demand on the network. Unlike other clustering approaches, this model can explicitly ensure that flow demands “covered” in the model are refuelable considering the limited driving range of AFVs. Despite not explicitly including local intra-zonal trips, numerical experiments on a statewide highway network proved the effectiveness of the model in clustering stations based on inter-city flow volumes on the network. The model’s policy implementation will provide managerial insights for some key concerns of the industry, such as geographic equity vs. critical mass, from a new perspective. This project will serve as a step to support a more successful public transition to alternative-fuel vehicles. / Dissertation/Thesis / Masters Thesis Geography 2015
|
7 |
Developing Infrastructure to Promote Electric MobilitySandin, Carl-Oscar January 2010 (has links)
Electric mobility, E-mobility, will play a central role in a sustainable future transport system. The potential of curbing climate change in both short and long term are significant. Emobility will also offer the possibility to leapfrog the Internal Combustion car, IC-car, economy for developing countries. The low dependence of oil will be a benefit but E-mobility will demand a well functional electricity grid. Development of this grid will be beneficial for the developing world. For the European society E-mobility will in long term offer lower operating costs, decreased dependence of oil and lower emission of pollutants and Green House Gases, GHGs. All these factors are beneficial for the European society. The transition to E-mobility will depend upon a set of different factors and will call for different actions in order to overcome the barriers of E-mobility. A well developed charging infrastructure will be important in order to offer the full potential of E-mobility. The infrastructure will develop along with the market introduction of Electrical Vehicles, EVs. It is important that there are existing charging alternatives in the early introduction phase of EV in order to avoid the stagnation in the transition toward E-mobility. In order to provide the proper conditions for E-mobility, the determining factors must be investigated and evaluated. The four main factors are economical, social, R&D and infrastructure. The European driving patterns meet the offered operating range of an EV with ease. This means that EV has the potential to become an inner city vehicle under existing conditions. The investigation of the four determining factors leads to a base from which an implementation plan is suggested. The implementation plan is directed toward governments, energy utilities and other active participants in the development. The key factors of the implementation plan are to actively engage in the market, see E-mobility as a disruptive technology, use spin-off companies and social transparency. In order to gain the most from the implementation plan it is important that the correct actions are taken at the correct time. Therefore the transition period is divided into three phases; the introduction phase, the commercial phase and the re-development phase. The introduction phase will create the basic conditions for E-mobility. Government’s main action will be to invest in EVs and offer subsidies and other incentives to major companies that will equip their vehicle fleets with EVs. These actions will send signals toward vehicle Original Equipment Manufactures, OEMs, and other actors that the market of EVs is worth investing in. During the introduction phase try-out sessions, demonstrations and hearings will be important in order to communicate the advantages of E-mobility to society. Energy utilities will work to create roaming deals and standardization of important components and characteristics. The commercial phase is the most important phase for social adoption of E-mobility. During this phase commercial businesses will use EV charging a competitive advantage. New business models will be one of the keys to fully adoption of E-mobility. Cross industry alliances will reduce the initial cost, offer the service of a vehicle without owning it and leasing deals. The perception of travelling will shift and reduction of operating cost will be evaluated against travel time and planning. The re-development phase is based on a society that has adopted E-mobility. The development will proceed in order to offer more advantages to drivers but also to increase efficiency and to use the full potential of E-mobility.
|
Page generated in 0.0891 seconds