• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Précipitation des nitrures d’aluminium (AlN) dans un acier maraging à très faible teneur en azote : influence de la déformation plastique à chaud / Precipitation of aluminium nitride in a maraging steel with very low nitrogen content : Influence of hot-plastic deformation

Jeanmaire, Guillaume 26 October 2015 (has links)
Les aciers maraging classiques doivent leurs propriétés mécaniques à une composition chimique contrôlée et à des traitements thermiques adaptés, conduisant à des microstructures de martensite revenue et de précipitation de phases durcissantes (carbures et intermétalliques). Les performances de ce type d’aciers, en constante amélioration, ont donné naissance, au cours de la dernière décade, à une nouvelle nuance, le ML340TM, répondant à des applications spécifiques dans le domaine de l’aéronautique. Bien que la composition chimique soit strictement contrôlée en imposant, entre autres, une très faible teneur d’azote, des nitrures d’aluminium (AlN), de quelques dizaines de microns, peuvent précipiter. La précipitation de ces nitrures peut être à l’origine de la formation de microfissures, dommageables aux propriétés de fatigue. L’amélioration de ces propriétés de fatigue passe incontestablement par une réduction drastique de la taille de ces nitrures. Au cours de cette étude, il est apparu que les paramètres thermiques et thermomécaniques pouvaient avoir une influence sur les grandeurs microstructurales des nitrures d’aluminium : fraction massique, densité surfacique, distributions en taille et spatiale. Cette tâche a été possible grâce à la mise en place d’une méthode automatisée couplant l’analyse d’images à celle de la composition chimique. Cette méthode originale permet ainsi de discriminer, par la taille et par la chimie, les nitrures d’aluminium des autres particules (inclusion, carbures, etc.). Le rôle de certains paramètres du traitement thermique (vitesse de refroidissement, temps et température de maintien isotherme, trempe étagée, trempe intermédiaire) sur les grandeurs microstructurales des nitrures d’aluminium a été clairement identifié. Par ailleurs, l’effet d’une déformation plastique à chaud, dans le domaine austénitique, sur les grandeurs microstructurales des nitrures d’aluminium précipités, a aussi été mis en exergue. In fine, nous avons, dans cette étude, mis en évidence que l’obtention d’une précipitation submicronique de nitrures d’aluminium passe par une conjugaison maîtrisée des différents paramètres des traitements thermiques et thermomécaniques / The mechanical properties of the conventional maraging steels are controlled by the choice of chemical composition and appropriate heat treatment parameters; the latter leading to martensitic microstructure and precipitation hardening phases (carbides and intermetallics). In the last decade, this steel family, that mechanical properties are in steady progress, has enabled the development of a new grade of steel, namely: the ML340TM. The performance of the ML340TM is scheduled to meet applications in the aeronautic domain. Despite a strictly controlled chemical composition, requiring very low nitrogen content, aluminium nitride (AlN) can precipitate with particle size up to few tens of microns. The precipitation of these nitrides could be at the origin of micro-cracks formation, which is responsible of the fatigue properties degradation. Improvement of the fatigue property is undoubtedly related to a drastic reduction of the nitrides size. During this study, it was found that the parameters of thermal and thermo-mechanical treatments might have an influence on microstructural features of aluminium nitrides: mass fraction, surface density, size and spatial distribution. This task was made possible thanks to the introduction of an automated method coupling the image analysis to the chemical composition. This unusual method allows discriminating, by size and by chemistry, aluminium nitrides from the other particles (carbides inclusion, etc.). The role of some of the heat treatment parameters (cooling rate, time and isothermal holding temperature, intermediate and direct quenching) on the microstructural features of aluminium nitrides has been clearly identified. Furthermore, hot plastic deformation, in the austenitic range, has a highlighted effect on the microstructure features of the aluminium nitrides. Ultimately, in this study, we have revealed that getting a submicron aluminium nitride precipitation is subjected to a controlled combination of thermal and thermo-mechanical parameters
12

Contribution au développement des aimants supraconducteurs MgB2 R & W refroidis par conduction solide. / Contribution to the development of dry R & W MgB2 superconducting magnets

Pasquet, Raphael 08 January 2015 (has links)
Actuellement, l’immense majorité des aimants supraconducteurs, notamment d’IRM, sont refroidis par un bain d’hélium liquide à pression atmosphérique. Néanmoins, ce type de refroidissement est onéreux et impose des contraintes sécuritaires importantes pour les grands volumes. Pour ces raisons, le refroidissement des aimants supraconducteurs est souhaitable sans l’hélium liquide. L’utilisation de cryogénérateur permet de refroidir par conduction solide jusqu’à 4 K et ainsi supprimer l’hélium liquide. Néanmoins, les faibles puissances disponibles combiner aux difficultés de mise en œuvre de ce type de refroidissement rendent difficile l’utilisation dans ces conditions du NbTi. En revanche à 10 K, la puissance des cryogénérateurs augmente d’un facteur 10, mais l’utilisation d’un supraconducteur à haute température critique est alors nécessaire. Notre choix s’est porté sur les conducteurs MgB2 R & W qui ont l’avantage d’être relativement économique à mettre en œuvre, mais qui ont, en revanche, le défaut d’être sensible à la déformation. Il est donc nécessaire d’être soigneux lors de leurs bobinages pour ne pas dégrader leurs performances supraconductrices. Dans le cadre de cette thèse, nous avons développé un insert froid refroidis par conduction solide permettant de mesurer le courant critique des conducteurs MgB2 R & W ainsi que des maquettes. Pour ce faire, un nouveau type de contact thermique à base de nitrure d’aluminium a été développé. En complément, nous avons conçu deux maquettes d’aimant MgB2 R & W : un solénoïde et une double galette. Cette dernière a été fabriquée (grâce à une nouvelle méthode de bobinage brevetée) et testée avec succès. / Currently, the majority of superconducting magnets, including MRI, are cooled by a bath of liquid helium at atmospheric pressure. Nevertheless, this type of cooling is expensive and imposes significant security constraints for large volumes. For these reasons, the cooling of superconducting magnets is desirable without liquid helium. Cryocooler provides dry cooling to 4 K without any liquid helium. However, the power available is low and dry cooling is difficult. In these conditions, it is complicate to use NbTi with dry cooling. But if we increase the operating temperature to 10 K, the power of cryocooler increases by a factor of ten. Nevertheless in this case, it is necessary to use of a high critical temperature superconductor. We choose to use MgB2 R & W conductors because it is relatively low cost but it has the handicap to be sensible at mechanical stress. It is therefore necessary to be careful during their winding to not degrade their superconducting performance. As part of this thesis, we have developed a dry test facility to measure the critical current of MgB2 R & W conductors as well as mock-ups. To do this, a new type of thermal contact based on aluminum nitride has been developed. In addition to this development, we designed two MgB2 R & W magnet mock-ups: a solenoid and a double pancake. The double pancake was manufactured (with a new patented winding method) and it has been successfully tested.
13

Dissimilar Hetero-Interfaces with Group III-A Nitrides : Material And Device Perspectives

Chandrasekar, Hareesh January 2016 (has links) (PDF)
Group III-A nitrides (GaN, AlN, InN and alloys) are materials of considerable contemporary interest and currently enable a wide variety of optoelectronic and high-power, high-frequency electronic applications. All of these applications utilize device structures that employ a single or multiple hetero-junctions, with material compositions varying across the interface. For example, the workhorse of GaN based electronic devices is the high electron mobility transistor (HEMT) which is usually composed of an AlGaN/GaN hetero-junction, where a two-dimensional electron gas (2DEG) is formed due to differences in polarization between the two layers. In addition to such hetero-junctions in the same material family, formation of hetero-interfaces in nitrides begins right from the epitaxy of the very first layer due to the lack of native substrates for their growth. The consequences of such "dissimilar" hetero-junctions typically manifest as large defect densities at this interface which in turn gives rise to defective films. Additionally, if the substrate is also a semiconductor, the electrical properties at such dissimilar semiconductor-nitride hetero-junctions are particularly important in terms of their influence on the performance of nitride devices. Nevertheless, the large defect densities at such dissimilar 3D-3D semiconductor interfaces, which translate into more trap states, also prevents them from being used as active device layers to say nothing of reliability considerations arising because of these defects. Recently, the advent of 2D materials such as graphene and MoS2 has opened up avenues for Van der Waal’s epitaxy of these layered films with practically any other material. Such defect-free integration enables dissimilar semiconductor hetero-junctions to be used as active device layers with carrier transport across the 2D-3D hetero-interface. This thesis deals with hetero-epitaxial growth platforms for reducing defect densities, and the material and electrical properties of dissimilar hetero-junctions with the group III-A nitride material system.
14

Sinterização de nitreto de alumínio com compostos contendo cálcio. / Sintering of aluminium nitride with calcium compounds.

Molisani, André Luiz 23 November 2004 (has links)
O nitreto de alumínio (AlN) apresenta elevada condutividade térmica, além de um conjunto de propriedades físicas, que o torna um excelente candidato a substituir a alumina (Al2O3) e a berília (BeO) na fabricação de dispositivos eletrônicos de alta performance. A rota de fabricação do AlN com elevada condutividade térmica está estabelecida na literatura, sendo o Y2O3 e o CaO os aditivos de sinterização mais usados. No entanto, observou-se que os estudos sobre esta cerâmica esclarecem parcialmente os mecanismos envolvidos na sua sinterização. Assim, este trabalho tem como objetivo geral estudar os possíveis mecanismos envolvidos na sinterização do AlN, tendo como objetivo específico estudar a influência do teor de CaCO3 e CaO na densificação do AlN. O comportamento de densificação do AlN com 0,5%, 1%, 2%, 4% e 8% em peso de CaO, adicionado na forma de CaCO3 e CaO calcinado, foi estudado por sinterizações em dilatômetro e em forno com elemento resistivo de tungstênio entre 1100ºC e 2000ºC. Os corpos sinterizados foram analisados por microscopia eletrônica de varredura, microanálise por espectrometria por dispersão de energia, difratometria de Raios X e análise química por espectrometria de emissão atômica por plasma de acoplamento induzido. Os resultados experimentais mostraram que não ocorreu variações significativas nos comportamentos de densificação das amostras de AlN com adição de CaCO3 e CaO entre 1100ºC e 1800ºC, desde que as comparações sejam feitas em relação aos respectivos teores equivalentes de CaO. A adição de pequenas quantidades de ambos os aditivos, ou seja, de 0,5% em teor equivalente de CaO, aumentou de forma significativa a sinterabilidade do AlN. O aumento do teor de ambos os aditivos causou a formação de segundas fases de aluminato de cálcio mais ricas em CaO entre 1300ºC e 1600ºC, o que era esperado. Entretanto, acima desta faixa de temperatura, observou-se uma tendência de formar a fase CA, independente do teor e tipo de aditivo usado, mostrando que a fase CA é mais estável em altas temperaturas no AlN do que as demais fases de aluminato de cálcio previstas no sistema CaO – Al2O3. Em geral, a densificação das amostras de AlN com adição de CaCO3 e CaO foi influenciada pela rota de evolução das segundas fases, quantidade de fase líquida e a formação de poros grandes. A formação de fases ricas em CaO (C3A e C12A7) promoveu a formação de fase líquida em baixas temperaturas, o que causou uma rápida densificação inicial das amostras de AlN com 2% a 8% de CaO, com ambos os aditivos, abaixo de 1600ºC. O aumento do teor de aditivo também favoreceu a densificação destas amostras devido à maior quantidade de fase líquida formada, porém, causou a formação de uma elevada quantidade poros grandes. As amostras de AlN com 0,5% e 1% de CaO, com ambos os aditivos, apresentaram menor quantidade de poros grandes, porém, apresentaram fases mais ricas em Al2O3 (CA2 e CA6), as quais fundem em mais alta temperatura. Assim, somente acima de 1600ºC estas amostras apresentaram rápida densificação devido à formação de fase líquida e à baixa fração de poros grandes. Por outro lado, as amostras com 2% a 8% em teor equivalente de CaO apresentaram lenta densificação devido à dificuldade de eliminação dos poros grandes, mesmo sinterizando em altas temperaturas (>1800ºC). De maneira geral, os poros grandes foram sendo eliminados da microestrutura em decorrência do crescimento de grão, que ocorreu principalmente durante a sinterização assistida por fase líquida. / Aluminum nitride (AlN) presents high thermal conductivity, beyond several physical properties, that make it an excellent candidate to substitute alumina (Al2O3) and the berylia (BeO) in the manufacturing of high performance electronic devices. The route of production of AlN with high thermal conductivity is established in literature, with Y2O3 and CaO the most used sintering additives. However, the studies on this ceramics clarify only partially the mechanisms involved in its sintering. The general aim of this work was to study the possible mechanisms related in the sintering of AlN. The specific objective was to understanding the influence of the amount of CaCO3 and CaO in the densification of AlN. The densification behavior of AlN with 0.5%, 1%, 2%, 4%, and 8% in weight of CaO, added as CaCO3 and calcined CaO, was studied by sintering both in dilatometer and in an oven with tungsten resistive elements between 1100ºC and 2000ºC. The sintered bodies were analyzed by scanning electronic microscopy, microanalysis by energy dispersive spectrometry, X-ray difratometry, and chemical analysis by ICP-AES. The same general tendencies in densification were observed in samples with CaCO3 and calcined CaO between 1100ºC and 1800ºC. The addition of small amounts of both additives (0.5% CaO) strongly enhanced the sinterability of AlN. With increasing amount of both additives, calcium aluminates richer in CaO were formed between 1300ºC and 1600ºC, as expected. However, above this temperature range, it was observed the tendency of the formation of CA phase, independent of the additive type and content, showing that the CA phase is more stable in high temperatures in AlN than the others calcium aluminates predicted by CaO - Al2O3 system. As a rule, the densification of the AlN samples with CaCO3 and calcined CaO additions was influenced by the second-phase evolution path, liquid phase content, and the formation of large pores. The formation of CaO rich phases (C3A and C12A7) promoted the formation of liquid phase in low temperatures, which caused a fast initial densification of the AlN samples with 2% to 8% CaO, with both additives, below 1600ºC. The increasing additive content also favored the densification of theses samples by the formation of a higher amount of liquid phase, but it caused the formation of higher fractions of large pores. The AlN samples with 0.5% and 1% CaO, with both additives, presented lower fractions of large pores, however they presented Al2O3 rich aluminate phases (CA2 and CA6), which melt at higher temperatures. Thus, only above 1600ºC these samples presented rapid densification because of the formation of liquid phase and the low fraction of large pores. On the other hand, the samples with 2% to 8% CaO presented slow densification because of the difficult of the elimination of the large pores, even sintering at high temperatures (> 1800ºC). The large pores were gradually eliminated from the microstructure as a consequence of grain growth, which occurred mainly during the liquid phase sintering.
15

Thin Film Plate Acoustic Resonators for Frequency Control and Sensing Applications

Arapan, Lilia January 2012 (has links)
The recent development of the commercially viable thin film electro-acoustic technology has triggered a growing interest in the research of plate guided wave or Lamb wave components owing to their unique characteristics. In the present thesis i) an experimental study of the thin film plate resonators (FPAR) performance operating on the lowest symmetrical Lamb wave (S0) propagating in highly textured AlN membranes versus a variety of design parameters has been performed. The S0 mode is excited through an Interdigital Transducer and confined within the structure by means of reflection from metal strip gratings. Devices operating in the vicinity of the stop-band center exhibiting a Q-value of up to 3000 at a frequency around 900MHz have been demonstrated. Temperature compensation of this type of devices has been studied theoretically and successfully realized experimentally for the first time. Further, integrated circuit-compatible S0 Lamb based two-port FPAR stabilized oscillators exhibiting phase noise of -92 dBc/Hz at 1 kHz frequency offset with feasible thermal noise floor below -180 dBc/Hz have been tested under high power for a couple of weeks. More specifically, the FPARs under test have been running without any performance degradation at up to 27 dBm loop power. Further, the S0 mode was experimentally demonstrated to be highly mass and pressure sensitive as well as suitable for in-liquid operation, which together with low phase noise and high Q makes it very suitable for sensor applications; ii) research in view of FPARs operating on other types of Lamb waves as well as novel operation principles has been initiated. In this work, first results on the design, fabrication and characterization of two novel type resonators: The Zero Group Velocity Resonators (ZGVR) and The Intermode-Coupled Thin Film Plate Acoustic Resonators (IC-FPAR), exploiting new principles of operation have been successfully demonstrated. The former exploits the intrinsic zero group velocity feature of the S1 Lamb mode for certain combination of design parameters while the latter takes advantage of the intermode interaction (involving scattering) between S0 and A1 Lamb modes through specially designed metal strip gratings (couplers). Thus both type of resonators operate on principles of confining energy under IDT other than reflection.
16

Tuning the thermal conductivity of polycrystalline films via multiscale structural defects and strain / Modulation de la conductivité thermique de couches minces polycristallines par défauts structuraux multi-échelle et par déformation

Jaramillo Fernandez, Juliana 13 May 2015 (has links)
La compréhension et le contrôle de la conductivité thermique des couches minces polycristallines est fondamentale pour améliorer la performance et la fiabilité des dispositifs micro- et optoélectroniques. Toutefois, une description et un contrôle précis de la performance thermique de ces matériaux bidimensionnels restent une tâche difficile en raison de leur anisotropie et structure hétérogène. En effet, les couches minces obtenues par diverses techniques et avec une large gamme de paramètres de dépôt, sont composées de petites cristallites à l'interface avec le substrat, qui coalescent et évoluent vers une structure colonnaire à proximité de la surface extérieure du film. Ces grains,ainsi que d'autres défauts cristallographiques, tels que les impuretés d'oxygène,augmentent les processus de dispersion diffuse des porteurs d'énergie dans les matériaux, ce qui en conséquence, réduit considérablement leur conductivité thermique. La caractérisation thermique expérimentale, la description théorique et la modulation contrôlée des propriétés thermiques de ces matériauxs ont, par conséquent, indispensables.Cette thèse est consacrée à l'étude de la conductivité thermique des couches polycristallines présentant une non-homogénéité structurelle et elle a pour but d'explorer la possibilité de moduler le transfert de chaleur à travers ces structures bidimensionnelles. Le nitrure d'aluminium a été sélectionné pour cette étude du fait de ses propriétés thermiques et piézoélectriques, particulièrement intéressantes pour des nouvelles applications technologiques. Réalisées par pulvérisation cathodique magnétron, des monocouches et multicouches d'AlN hautement texturées sur des substrats de silicium monocristallin ont été obtenues.Leur microstructure et distribution d'orientations cristallographiques le long de la normale à la surface, ont été caractérisées expérimentalement pour déterminer,avec précision, l'évolution de la structure et de la taille des grains.L'impact de l'oxydation locale et l'évolution de la morphologie de grains sur la conductivité thermique transversale a été étudiée par la méthode 3W différentielle.La dispersion diffuse des phonons due aux défauts liés à la présence d'atomes d'oxygène, localisés à l'interface entre deux couches d'AlN, a été étudiée par des mesures thermiques sur la configuration multicouche.Les caractéristiques structurelles des couches polycristallines ont été corrélées avec les propriétés thermiques à partir d'un modèle théorique, qui tient compte de la répartition et de la géométrie des grains, et considère les films comme un ensemble en série de trois zones, composées de grains parallélépipédiques. Les résultats de conductivité thermique obtenus par la mesure des monocouches et multicouches polycristallines d'AlN sont bien prédits par le modèle développé,avec une différence inférieure à 10%. Une description physique détaillée des phénomènes de dispersion diffuse à l'interface avec le substrat, aux joints de grains, et aux défauts liés à l'oxygène, en fonction de l'hétérogénéité structurelle caractéristique, a été réalisée en comparant les résultats expérimentaux aux prédictions théoriques. Enfin, pour explorer la modulation dynamique du transfert de chaleur, l'influence de la déformation du réseau cristallin, causée par des contraintes mécaniques, sur la conductivité thermique des monocouches et multicouches d'AlN, a été étudiée en utilisant une nouvelle approche expérimentale qui couple un système de flexion 4-points avec la méthode 3W. / The understanding and control of the thermal conductivity of nano and microscale polycrystalline thin films is of fundamental importance for enhancing the performance and reliability of micro- and optoelectronic devices. However, the accurate description and control of the thermal performance of these bidimensional materials remain a difficult task due to their anisotropic and heterogeneous structure. Indeed, thin films obtained with a large number of deposition techniques and parameters, are composed of small crystallites at the interface with the substrate, which coalesce and evolve towards a columnar structure near the outer surface. These grains along with various crystallographic defects, such as oxygen impurities, increase the scattering processes of the energy carriers inside the materials, which in turn, reduce significantly their thermal conductivity. Experimental thermal characterization, accurate theoretical description and controlled modulation of the thermal properties of these materials are therefore desirable.This work is devoted to the investigation of the thermal conductivity of nanoscale polycrystalline films and explores the possibility to modulate heat transfer across these low dimensional structures. Because of its great interest in new technological applications, and its outstanding thermal and piezoelectric properties,aluminum nitride (AlN) served as a test material in this study. Highlytextured AlN mono- and multilayers were obtained by reactive radio-frequency magnetron sputtering on single-crystal silicon substrates. The microstructure and distribution of crystallographic orientations along the cross plane were characterized by transmission electron microscopy to accurately determine the grain structure and size evolution. The impact of local oxidation and structural inhomogeneity along the cross plane on the thermal conductivity was investigatedby thickness-dependent measurements performed by the differential 3Wtechnique. The diffusive scattering caused by oxygen-related defects, localized at the interface between two AlN layers, was studied by thermal measurements on the multilayered configuration. Structural features of the polycrystalline films were correlated with their thermal properties using a theoretical model,which takes into account the distribution of the grain geometry and considers the films as a serial assembly of three layers, composed of parallele piped grains.The experimental values of the thermal conductivity of the mono- and multilayerAlN polycrystalline films are well predicted by the developed model, witha deviation of less than 10%. Physical description of scattering phenomena at the interface, grain boundaries, and oxygen related defects, as a function of the characteristic structural heterogeneity, was achieved by comparing the experimental results to the theoretical predictions. It was found that grain mean sizes that evolve along the cross-plane direction, and structural features at the interface and transition domains, are key elements to understand and tailor thermal properties of nanocrystalline films with inhomogeneous structures. The results demonstrate that the structural inhomogeneity and oxygen-related defects in polycrystalline AlN films can be efficiently used to statically tune their cross-plane thermal conductivity. Finally, dynamic modulation of heat transfer bymeans of externally induced elastic strain on mono- and multilayer AlN films was investigated using a novel experimental approach consisting of a 4-pointsbending system coupled to the 3W method.
17

Sinterização de nitreto de alumínio com compostos contendo cálcio. / Sintering of aluminium nitride with calcium compounds.

André Luiz Molisani 23 November 2004 (has links)
O nitreto de alumínio (AlN) apresenta elevada condutividade térmica, além de um conjunto de propriedades físicas, que o torna um excelente candidato a substituir a alumina (Al2O3) e a berília (BeO) na fabricação de dispositivos eletrônicos de alta performance. A rota de fabricação do AlN com elevada condutividade térmica está estabelecida na literatura, sendo o Y2O3 e o CaO os aditivos de sinterização mais usados. No entanto, observou-se que os estudos sobre esta cerâmica esclarecem parcialmente os mecanismos envolvidos na sua sinterização. Assim, este trabalho tem como objetivo geral estudar os possíveis mecanismos envolvidos na sinterização do AlN, tendo como objetivo específico estudar a influência do teor de CaCO3 e CaO na densificação do AlN. O comportamento de densificação do AlN com 0,5%, 1%, 2%, 4% e 8% em peso de CaO, adicionado na forma de CaCO3 e CaO calcinado, foi estudado por sinterizações em dilatômetro e em forno com elemento resistivo de tungstênio entre 1100ºC e 2000ºC. Os corpos sinterizados foram analisados por microscopia eletrônica de varredura, microanálise por espectrometria por dispersão de energia, difratometria de Raios X e análise química por espectrometria de emissão atômica por plasma de acoplamento induzido. Os resultados experimentais mostraram que não ocorreu variações significativas nos comportamentos de densificação das amostras de AlN com adição de CaCO3 e CaO entre 1100ºC e 1800ºC, desde que as comparações sejam feitas em relação aos respectivos teores equivalentes de CaO. A adição de pequenas quantidades de ambos os aditivos, ou seja, de 0,5% em teor equivalente de CaO, aumentou de forma significativa a sinterabilidade do AlN. O aumento do teor de ambos os aditivos causou a formação de segundas fases de aluminato de cálcio mais ricas em CaO entre 1300ºC e 1600ºC, o que era esperado. Entretanto, acima desta faixa de temperatura, observou-se uma tendência de formar a fase CA, independente do teor e tipo de aditivo usado, mostrando que a fase CA é mais estável em altas temperaturas no AlN do que as demais fases de aluminato de cálcio previstas no sistema CaO – Al2O3. Em geral, a densificação das amostras de AlN com adição de CaCO3 e CaO foi influenciada pela rota de evolução das segundas fases, quantidade de fase líquida e a formação de poros grandes. A formação de fases ricas em CaO (C3A e C12A7) promoveu a formação de fase líquida em baixas temperaturas, o que causou uma rápida densificação inicial das amostras de AlN com 2% a 8% de CaO, com ambos os aditivos, abaixo de 1600ºC. O aumento do teor de aditivo também favoreceu a densificação destas amostras devido à maior quantidade de fase líquida formada, porém, causou a formação de uma elevada quantidade poros grandes. As amostras de AlN com 0,5% e 1% de CaO, com ambos os aditivos, apresentaram menor quantidade de poros grandes, porém, apresentaram fases mais ricas em Al2O3 (CA2 e CA6), as quais fundem em mais alta temperatura. Assim, somente acima de 1600ºC estas amostras apresentaram rápida densificação devido à formação de fase líquida e à baixa fração de poros grandes. Por outro lado, as amostras com 2% a 8% em teor equivalente de CaO apresentaram lenta densificação devido à dificuldade de eliminação dos poros grandes, mesmo sinterizando em altas temperaturas (>1800ºC). De maneira geral, os poros grandes foram sendo eliminados da microestrutura em decorrência do crescimento de grão, que ocorreu principalmente durante a sinterização assistida por fase líquida. / Aluminum nitride (AlN) presents high thermal conductivity, beyond several physical properties, that make it an excellent candidate to substitute alumina (Al2O3) and the berylia (BeO) in the manufacturing of high performance electronic devices. The route of production of AlN with high thermal conductivity is established in literature, with Y2O3 and CaO the most used sintering additives. However, the studies on this ceramics clarify only partially the mechanisms involved in its sintering. The general aim of this work was to study the possible mechanisms related in the sintering of AlN. The specific objective was to understanding the influence of the amount of CaCO3 and CaO in the densification of AlN. The densification behavior of AlN with 0.5%, 1%, 2%, 4%, and 8% in weight of CaO, added as CaCO3 and calcined CaO, was studied by sintering both in dilatometer and in an oven with tungsten resistive elements between 1100ºC and 2000ºC. The sintered bodies were analyzed by scanning electronic microscopy, microanalysis by energy dispersive spectrometry, X-ray difratometry, and chemical analysis by ICP-AES. The same general tendencies in densification were observed in samples with CaCO3 and calcined CaO between 1100ºC and 1800ºC. The addition of small amounts of both additives (0.5% CaO) strongly enhanced the sinterability of AlN. With increasing amount of both additives, calcium aluminates richer in CaO were formed between 1300ºC and 1600ºC, as expected. However, above this temperature range, it was observed the tendency of the formation of CA phase, independent of the additive type and content, showing that the CA phase is more stable in high temperatures in AlN than the others calcium aluminates predicted by CaO - Al2O3 system. As a rule, the densification of the AlN samples with CaCO3 and calcined CaO additions was influenced by the second-phase evolution path, liquid phase content, and the formation of large pores. The formation of CaO rich phases (C3A and C12A7) promoted the formation of liquid phase in low temperatures, which caused a fast initial densification of the AlN samples with 2% to 8% CaO, with both additives, below 1600ºC. The increasing additive content also favored the densification of theses samples by the formation of a higher amount of liquid phase, but it caused the formation of higher fractions of large pores. The AlN samples with 0.5% and 1% CaO, with both additives, presented lower fractions of large pores, however they presented Al2O3 rich aluminate phases (CA2 and CA6), which melt at higher temperatures. Thus, only above 1600ºC these samples presented rapid densification because of the formation of liquid phase and the low fraction of large pores. On the other hand, the samples with 2% to 8% CaO presented slow densification because of the difficult of the elimination of the large pores, even sintering at high temperatures (> 1800ºC). The large pores were gradually eliminated from the microstructure as a consequence of grain growth, which occurred mainly during the liquid phase sintering.
18

Schockwellensynthese und Charakterisierung von Aluminiumnitrid mit Kochsalzstruktur

Keller, Kevin 06 February 2014 (has links) (PDF)
Die vorliegende Arbeit beschreibt die Ergebnisse der Synthese und Charakterisierung der Hochdruckphase von Aluminiumnitrid mit Kochsalzstruktur (rs-AlN). Die Versuche wurden mittels Schockwellensynthese unter Verwendung der „flyer-plate-Methode“ mit anschließender Probenrückgewinnung durchgeführt. Für verschiedene Aluminiumnitridpulver mit einer Ausgangsporosität k = rho_solid/rho_porous von 1,5 bis 2,5 wurde bei einem Druck von 15 bis 43 GPa die Phasenumwandlung von der Wurtzitstruktur (w-AlN) in die Kochsalzstruktur (rs-AlN) bewirkt. Es ist damit erstmals gelungen, rs-AlN mit dynamischen HP-HT-Methoden herzustellen und damit Probenmengen im Milligramm- bis Grammbereich zu erhalten. Dadurch ist es möglich Untersuchungen durchzuführen, die zur weiteren Erforschung und Charakterisierung des Materials beitragen sollen. Im Fokus liegen dabei insbesondere die Untersuchung der mechanischen, thermischen und chemischen Stabilität, um die Eignung des Materials zur Herstellung ultraharter Komposite zu evaluieren. Die geschockten Pulver bestehen aus einem Phasengemisch aus dem Ausgangsmaterial (w-AlN), der Hochdruckphase (rs-AlN), Aluminiumoxid und -oxynitriden, sowie amorphen Aluminiumhydroxiden. Die höchste Ausbeute an rs-AlN (~41 Ma% bei 2 mm Probenhöhe) kann bei Drücken von 24 GPa und einer Ausgangsporosität k von 2,1 erhalten werden. Anhand dem Auftreten verschiedener Al-O-N Phasen kann die Schocktemperatur für die einzelnen Versuche abgeschätzt werden (<1700 °C bis <2000 °C). Die Phasenumwandlung wird durch die Temperaturerhöhung aufgrund der Schockkompaktion der Pulver aktiviert. Als entgegenwirkender Prozess wurde die thermisch aktivierte Rückwandlung in die Niederdruckphase w-AlN aufgrund einer zu hohen Post-Schocktemperatur und einem zu langsamen Abkühlen der Probe postuliert. Daraus ergibt sich eine optimale Temperatur für den Versuchsaufbau von 1700 bis 1900 °C, bei der die höchsten rs-AlN Anteile beobachtet wurden. Eine Verringerung der Probenhöhe erhöht den Einfluss von Mehrfachreflektionen in der Probe und trägt damit zur Verbesserung der Umsetzung bei. Für drei Nanopulver (Kristallitgröße <25 nm) wurde die teilweise Umwandlung in die Kochsalzstruktur beobachtet, wohingegen für ein gröberes Nanopulver und ein Submikropulver (Kristallitgröße >45 nm) kein rs-AlN in den geschockten Proben nachgewiesen werden konnte. Es wird ein Stabilisierungsmechanismus der Kochsalzstruktur durch Kristallitgrößeneffekte vorhergesagt. Die Verringerung der Kristallitgröße führt zur Herabsetzung des Umwandlungsdrucks w-AlN -> rs-AlN. Es lässt sich daher schlussfolgern, dass für kleinere Partikel die Hochdruckmodifikation aufgrund der geringeren Entfernung vom chemischen Gleichgewicht bei Normalbedingungen stabilisiert werden kann, wohingegen für größere Kristallite die Rückwandlung in die Ausgangsphase geschieht. Weitere Stabilisierungsmechanismen wurden diskutiert. Mithilfe einer Rietveld-Verfeinerung der Röntgendiffraktogramme wurde die Gitterkonstante des rs-AlN mit a = 4,044 ± 0,001 Å und die Kristallitgröße mit 15,3 ± 0,2nm bestimmt. Die mittels hoch-aufgelöster Transmissionselektronenmikroskopie (TEM) bestimmte Kristallitgröße (10 bis 20 nm) ist in guter Übereinstimmung mit den Ergebnissen der Rietveld-Verfeinerung. Mit 27Al Kernspinresonanzspektroskopie (NMR) wurde die oktaedrische Al–N-Umgebung (AlN6) mit einer korrigierten chemischen Verschiebung von 2 ppm nachgewiesen. Anhand der IR-Spektren wird eine Al–N-Schwingungsbande des rs-AlN bei ca. 490 cm−1 vermutet. Dynamisch-thermische Untersuchungen zeigen, dass nanokristallines rs-AlN bei 600 °C beginnt zu Aluminiumoxid zu oxidieren und damit keine größere Beständigkeit im Vergleich zum w-AlN zeigt. Die thermisch aktivierte Rückwandlung des rs-AlN in die Niederdruckphase wurde ab 1200 °C (in Argon) bzw. 1100 °C (im Vakuum) bei einer Heizrate von 10 K/min beobachtet. Eine gute chemische Beständigkeit des Aluminiumnitrid mit Kochsalzstruktur gegenüber Wasser, Natronlauge und Säuren (HCl, H2SO4, H3PO4, HNO3 und Königswasser) wurde in Langzeit-Löslichkeitsversuchen nachgewiesen. / In the present work the results of the synthesis and characterisation of the high-pressure phase of aluminium nitride with rocksalt structure (rs-AlN) are presented. The experiments were carried out with the flyer-plate-method with subsequently sample recovery. For different aluminium nitride powders with starting porosities k = rho_solid/rho_porous of 1.5 to 2.5 the phase transition from wurtzite structure (w-AlN) to the rocksalt structure (rs-AlN) was induced at a pressure of 15 to 43 GPa. This is to our knowledge the first succesful synthesis of rs-AlN with dynamic HP-HT methods. With this advance, samples in the milligram or gram range can be produced. Therefore further investigations to characterise the material are possible, especially the study of the mechanical, thermal and chemical stability to validate the potential for the production of ultrahard composites. The shocked samples consist of a phase mixture from the starting material (w-AlN), the high-pressure phase (rs-AlN), aluminium oxide and oxynitrides, as well as amorphous aluminium hydroxides. The highest yield of rs-AlN (~41 wt% at 2 mm sample height) can be obtained at a pressure of 24 GPa and a starting porosity k of 2.1. The shock temperature can be estimated by the formation of different Al-O-N phases (<1700 °C to <2000 °C). The phase transition is activated by the raise of temperature due to shock compression. A thermal activated reconversion to the low-pressure phase w-AlN caused by a high post-shock temperature and a slow cooling of the sample is postulated as a contrary process. This results in an optimum temperature of 1700 to 1900 °C for this set-up. A decrease of the sample height increases the influence of multiple reflections and therefore causes a better transformation. A partial conversion to rs-AlN was observed for three nanopowders (crystallite size <25 nm), whereas for a more coarse nanopowder and an submicronpowder (crystallite size >45 nm) no rs-AlN could be found in the shocked samples. A stabilisation mechanism of the rocksalt phase by crystallite size effects is predicted. The reduction of the crystallite size causes a decrease of the transition pressure for w-AlN -> rs-AlN. It can be concluded, that for smaller particles the high-pressure phase can be stabilised at ambient conditions on the basis of the smaller distance from equilibrium, whereas for larger particles the reconversion to the low-pressure phase occurs. By a Rietveld refinement of the X-ray diffractograms, the lattice constant of rs-AlN and the crystallite size was determined to be a = 4.044 ± 0.001 Å respectively 15.3 ± 0.2 nm. The crystallite size of rs-AlN (10 to 20 nm) determined with high-resolution transmission electron microscopy (TEM) is in good agreement with the results of the Rietveld refinement. The octahedral Al–Npolyhedral (AlN6) was demonstrated by 27Al nuclear magnetic resonance spectroscopy (NMR) with a corrected chemical shift of 2 ppm. Based on infrared spectroscopy (FTIR) an AlN vibration band at about 490 cm−1 is assumed. Dynamic thermal analysis show, that the rs-AlN starts to oxidise to alumina at 600 °C and thus have no greater resistance in comparison with w-AlN. The thermal activated reconversion of rs-AlN to the low-pressure phase starts at 1200 °C (in argon) respectively 1100 °C (under vacuum) at a heating rate of 10 K/min. The aluminium nitride with rocksalt structure shows a good chemical resistance against water, caustic soda and acids (HCl, H2SO4, H3PO4, HNO3 and aqua regia).
19

Schockwellensynthese und Charakterisierung von Aluminiumnitrid mit Kochsalzstruktur

Keller, Kevin 20 December 2013 (has links)
Die vorliegende Arbeit beschreibt die Ergebnisse der Synthese und Charakterisierung der Hochdruckphase von Aluminiumnitrid mit Kochsalzstruktur (rs-AlN). Die Versuche wurden mittels Schockwellensynthese unter Verwendung der „flyer-plate-Methode“ mit anschließender Probenrückgewinnung durchgeführt. Für verschiedene Aluminiumnitridpulver mit einer Ausgangsporosität k = rho_solid/rho_porous von 1,5 bis 2,5 wurde bei einem Druck von 15 bis 43 GPa die Phasenumwandlung von der Wurtzitstruktur (w-AlN) in die Kochsalzstruktur (rs-AlN) bewirkt. Es ist damit erstmals gelungen, rs-AlN mit dynamischen HP-HT-Methoden herzustellen und damit Probenmengen im Milligramm- bis Grammbereich zu erhalten. Dadurch ist es möglich Untersuchungen durchzuführen, die zur weiteren Erforschung und Charakterisierung des Materials beitragen sollen. Im Fokus liegen dabei insbesondere die Untersuchung der mechanischen, thermischen und chemischen Stabilität, um die Eignung des Materials zur Herstellung ultraharter Komposite zu evaluieren. Die geschockten Pulver bestehen aus einem Phasengemisch aus dem Ausgangsmaterial (w-AlN), der Hochdruckphase (rs-AlN), Aluminiumoxid und -oxynitriden, sowie amorphen Aluminiumhydroxiden. Die höchste Ausbeute an rs-AlN (~41 Ma% bei 2 mm Probenhöhe) kann bei Drücken von 24 GPa und einer Ausgangsporosität k von 2,1 erhalten werden. Anhand dem Auftreten verschiedener Al-O-N Phasen kann die Schocktemperatur für die einzelnen Versuche abgeschätzt werden (<1700 °C bis <2000 °C). Die Phasenumwandlung wird durch die Temperaturerhöhung aufgrund der Schockkompaktion der Pulver aktiviert. Als entgegenwirkender Prozess wurde die thermisch aktivierte Rückwandlung in die Niederdruckphase w-AlN aufgrund einer zu hohen Post-Schocktemperatur und einem zu langsamen Abkühlen der Probe postuliert. Daraus ergibt sich eine optimale Temperatur für den Versuchsaufbau von 1700 bis 1900 °C, bei der die höchsten rs-AlN Anteile beobachtet wurden. Eine Verringerung der Probenhöhe erhöht den Einfluss von Mehrfachreflektionen in der Probe und trägt damit zur Verbesserung der Umsetzung bei. Für drei Nanopulver (Kristallitgröße <25 nm) wurde die teilweise Umwandlung in die Kochsalzstruktur beobachtet, wohingegen für ein gröberes Nanopulver und ein Submikropulver (Kristallitgröße >45 nm) kein rs-AlN in den geschockten Proben nachgewiesen werden konnte. Es wird ein Stabilisierungsmechanismus der Kochsalzstruktur durch Kristallitgrößeneffekte vorhergesagt. Die Verringerung der Kristallitgröße führt zur Herabsetzung des Umwandlungsdrucks w-AlN -> rs-AlN. Es lässt sich daher schlussfolgern, dass für kleinere Partikel die Hochdruckmodifikation aufgrund der geringeren Entfernung vom chemischen Gleichgewicht bei Normalbedingungen stabilisiert werden kann, wohingegen für größere Kristallite die Rückwandlung in die Ausgangsphase geschieht. Weitere Stabilisierungsmechanismen wurden diskutiert. Mithilfe einer Rietveld-Verfeinerung der Röntgendiffraktogramme wurde die Gitterkonstante des rs-AlN mit a = 4,044 ± 0,001 Å und die Kristallitgröße mit 15,3 ± 0,2nm bestimmt. Die mittels hoch-aufgelöster Transmissionselektronenmikroskopie (TEM) bestimmte Kristallitgröße (10 bis 20 nm) ist in guter Übereinstimmung mit den Ergebnissen der Rietveld-Verfeinerung. Mit 27Al Kernspinresonanzspektroskopie (NMR) wurde die oktaedrische Al–N-Umgebung (AlN6) mit einer korrigierten chemischen Verschiebung von 2 ppm nachgewiesen. Anhand der IR-Spektren wird eine Al–N-Schwingungsbande des rs-AlN bei ca. 490 cm−1 vermutet. Dynamisch-thermische Untersuchungen zeigen, dass nanokristallines rs-AlN bei 600 °C beginnt zu Aluminiumoxid zu oxidieren und damit keine größere Beständigkeit im Vergleich zum w-AlN zeigt. Die thermisch aktivierte Rückwandlung des rs-AlN in die Niederdruckphase wurde ab 1200 °C (in Argon) bzw. 1100 °C (im Vakuum) bei einer Heizrate von 10 K/min beobachtet. Eine gute chemische Beständigkeit des Aluminiumnitrid mit Kochsalzstruktur gegenüber Wasser, Natronlauge und Säuren (HCl, H2SO4, H3PO4, HNO3 und Königswasser) wurde in Langzeit-Löslichkeitsversuchen nachgewiesen.:1. Einleitung 2. Grundlagen 3. Methoden und experimentelle Details 4. Ergebnisse 5. Diskussion 6. Schlussfolgerungen und Ausblick / In the present work the results of the synthesis and characterisation of the high-pressure phase of aluminium nitride with rocksalt structure (rs-AlN) are presented. The experiments were carried out with the flyer-plate-method with subsequently sample recovery. For different aluminium nitride powders with starting porosities k = rho_solid/rho_porous of 1.5 to 2.5 the phase transition from wurtzite structure (w-AlN) to the rocksalt structure (rs-AlN) was induced at a pressure of 15 to 43 GPa. This is to our knowledge the first succesful synthesis of rs-AlN with dynamic HP-HT methods. With this advance, samples in the milligram or gram range can be produced. Therefore further investigations to characterise the material are possible, especially the study of the mechanical, thermal and chemical stability to validate the potential for the production of ultrahard composites. The shocked samples consist of a phase mixture from the starting material (w-AlN), the high-pressure phase (rs-AlN), aluminium oxide and oxynitrides, as well as amorphous aluminium hydroxides. The highest yield of rs-AlN (~41 wt% at 2 mm sample height) can be obtained at a pressure of 24 GPa and a starting porosity k of 2.1. The shock temperature can be estimated by the formation of different Al-O-N phases (<1700 °C to <2000 °C). The phase transition is activated by the raise of temperature due to shock compression. A thermal activated reconversion to the low-pressure phase w-AlN caused by a high post-shock temperature and a slow cooling of the sample is postulated as a contrary process. This results in an optimum temperature of 1700 to 1900 °C for this set-up. A decrease of the sample height increases the influence of multiple reflections and therefore causes a better transformation. A partial conversion to rs-AlN was observed for three nanopowders (crystallite size <25 nm), whereas for a more coarse nanopowder and an submicronpowder (crystallite size >45 nm) no rs-AlN could be found in the shocked samples. A stabilisation mechanism of the rocksalt phase by crystallite size effects is predicted. The reduction of the crystallite size causes a decrease of the transition pressure for w-AlN -> rs-AlN. It can be concluded, that for smaller particles the high-pressure phase can be stabilised at ambient conditions on the basis of the smaller distance from equilibrium, whereas for larger particles the reconversion to the low-pressure phase occurs. By a Rietveld refinement of the X-ray diffractograms, the lattice constant of rs-AlN and the crystallite size was determined to be a = 4.044 ± 0.001 Å respectively 15.3 ± 0.2 nm. The crystallite size of rs-AlN (10 to 20 nm) determined with high-resolution transmission electron microscopy (TEM) is in good agreement with the results of the Rietveld refinement. The octahedral Al–Npolyhedral (AlN6) was demonstrated by 27Al nuclear magnetic resonance spectroscopy (NMR) with a corrected chemical shift of 2 ppm. Based on infrared spectroscopy (FTIR) an AlN vibration band at about 490 cm−1 is assumed. Dynamic thermal analysis show, that the rs-AlN starts to oxidise to alumina at 600 °C and thus have no greater resistance in comparison with w-AlN. The thermal activated reconversion of rs-AlN to the low-pressure phase starts at 1200 °C (in argon) respectively 1100 °C (under vacuum) at a heating rate of 10 K/min. The aluminium nitride with rocksalt structure shows a good chemical resistance against water, caustic soda and acids (HCl, H2SO4, H3PO4, HNO3 and aqua regia).:1. Einleitung 2. Grundlagen 3. Methoden und experimentelle Details 4. Ergebnisse 5. Diskussion 6. Schlussfolgerungen und Ausblick
20

Осаждение и травление наноматериалов с использованием высоковакуумного плазмохимического модуля : магистерская диссертация / Deposition and etching of nanomaterials using a high-vacuum plasmachemical module

Камалов, Р. В., Kamalov, R. V. January 2017 (has links)
Объект изучения – модуль плазмохимического травления и осаждения на базе нанотехнологического комплекса Нанофаб-100. Цель работы — плазмохимический синтез тонких покрытий на основе нитридов алюминия и титана. Методы исследования: плазмостимулированное химическое осаждение из газовой фазы, электрохимическое окисление, плазменное азотирование, сканирующая электронная и атомно-силовая микроскопия, оптическая спектроскопия, наноиндентирование. В результате исследования разработана методика синтеза нитрида алюминия на установке плазмохимического синтеза. Синтезированы тонкие пленки нитрида алюминия толщиной 50-200 нм. Продемонстрирована возможность получения наноточек нитрида алюминия. С помощью плазмохимического азотирования модифицирована поверхность металлического титана с увеличением твердости в 4 раза. Показана возможность получения нанотубулярных структур нитрида титана, являющихся перспективными в целях создания электронных устройств, фотокаталитических ячеек и др. Результаты работы отражены в тезисах докладов III Международной молодежной научной конференции «Физика. Технологии. Инновации. ФТИ-2016». / The object of this study is the module of plasma chemical etching and deposition based on nanotechnology complex Nanofab-100. The goal of the current paper is the plasma-chemical synthesis of thin coatings based on aluminum and titanium nitrides. As a result of the research, a technological map for the routine of the plasma-chemical synthesis and a technique for obtaining nanomaterials on the example of aluminum nitride have been developed. There were synthesized thin films of aluminum nitride with 50-200 nm thickness. The possibility of synthesis nano-dots of AlN is demonstrated. The surface of metallic titanium has been modified with an increase in hardness by 4 times using plasma-assisted nitriding process. The possibility of obtaining nanotubular structures of titanium nitride, which are promising for microelectronic and photocatalysis, is shown. The results of the work are reported in abstracts of the III International Youth Scientific Conference «Physics. Technologies. Innovation. FTI-2016».

Page generated in 0.337 seconds