• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of Post-transcriptional Regulation of Cat-1 Gene Expression by Amino Acid Starvation

Yaman, Ibrahim 05 July 2005 (has links)
No description available.
2

Characterization of Amino Acid Transporters : Transporters expressed in the central nervous system belonging to the Solute Carrier family SLC38

Hellsten, Sofie Victoria January 2016 (has links)
In cells and organelles transporters are responsible for translocation of amino acids, sugars and nucleotides among others. In the central nervous system (CNS), amino acid transporters can function as neurotransmitter transporters and nutrient sensors. The Solute carrier (SLC) superfamily is the largest family of transporters with 395 members divided in 52 families. The system A and system N amino acid transporter family, SLC38, consists of 11 members, SNAT1-11 (SLC38A1-11). The members are expressed in the brain, exclusively in neurons or astrocytes and some in both. Amino acid signaling is mainly regulated via two pathways, the amino acid responsive (AAR) pathway and the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) pathway. These pathways regulate the protein synthesis in opposite directions depending on the amino acid availability. SLC38 members along with other SLCs have been identified to participate in these pathways. In paper I, the regulation of SLC genes after complete amino acid starvation in mouse hypothalamic cells have been studied with microarray and we found that 47 SLC genes were significantly altered at five hours of starvation. Interestingly, we found that Slc38a1 and Slc38a7 were upregulated along with the known starvation responding gene, Slc38a2. A complementary starvation study for the SLC38 genes was performed using primary mouse embryonic cortex cells. We found that Slc38a1, Slc38a2, Slc38a5, Slc38a6 and Slc38a8 were upregulated while Slc38a3, Slc38a7 and Slc38a11 were downregulated. Three members from the SLC38 family, SNAT8 (paper IV), SNAT9 (paper III) and SNAT10 (paper II) have been histologically characterized in mouse brain and all these transporters are exclusively neuronal. SNAT8 and SNAT10 were also functionally characterized and shown to be transporters for alanine and glutamine among others. SNAT8 was shown to mediate sodium dependent transport and was classified to system A. SNAT10 was shown to be a sodium independent bidirectional transporter and displayed characteristics for system A and N. SNAT9 is a lysosomal component of the Ragulator-Rag complex which senses amino acid availability and activates mTORC1. In paper III we also found that Slc38a9 gene expression was upregulated following starvation and downregulated following high-fat diet in mouse brain.
3

Differential tolerance of a cancer and a non-cancer cell line to amino acid deprivation : mechanistic insight and clinical potential

Thomas, Mark Peter 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Introduction – Due to spatial separation from the native vascular bed, solid tumours develop regions with limited access to nutrients essential for growth and survival. The promotion of a process known as macroautophagy may facilitate in the maintenance of intracellular amino acid levels, through breakdown of cytoplasmic proteins, so that they remain available for macromolecular biosynthesis and ATP production. Several studies point to the potential ability of some cancers to temporarily increase autophagy and thereby prolong cell survival during metabolic stress. The validity of these claims is assessed when a commonly used breast cancer cell line and an epithelial breast cell line are starved of amino acids in this study. Furthermore, we go on to hypothesize that acute amino acid deprivation during treatment will result in an elevated sensitivity of MDAMB231 cells to doxorubicin toxicity but limit its cytotoxic side-effects in MCF12A cells. Methods and study design- Human breast cancer cells (MDAMB231) and breast epithelial cells (MCF12A) cultured in complete growth medium were compared to those incubated in medium containing no amino acids. Steady state autophagy levels were monitored using classical protein markers of autophagy (LC3-II and beclin-1) and the acidic compartmentalization in cells (Lysotracker™ red dye) in conjunction with autophagy inhibition (bafilomycin A1 and ATG5 siRNA). Cell viability was monitored using several techniques, including caspase 3/7 activity. ATP levels were assessed using a bioluminescent assay, while mass spectrometry based proteomics was used to quantify cellular amino acid levels. Similar techniques were used to monitor autophagy during doxorubicin treatment, while cellular doxorubicin localization was monitored using immunofluorescence microscopy. Finally, a completely novel GFP-LC3 mouse tumour model was designed to assess autophagy and caspase activity within tumours in vivo, during protein limitation and doxorubicin treatment. Results - Amino acid deprivation resulted in a transient increase in autophagy at approximately 6 hours of amino acid starvation in MDAMB231 cells. The amino acid content was preserved within these cells in an autophagy-dependent manner, a phenomenon that correlated with the maintenance of ATP levels. Inhibition of autophagy during these conditions resulted in decreased amino acid and ATP levels and increased signs of cell death. MCF12A cells displayed a greater tolerance to amino acid starvation during 24 hours of amino acid starvation. Evidence indicated that autophagy was important for the maintenance of amino acid and ATP levels in these cells and helped prevent starvation-induced cell death. Furthermore, data showed that concomitant amino acid withdrawal resulted in decreased cellular acidity in MDAMB231 cells, and increased acidity in MCF12A cells, during doxorubicin treatment. These changes correlated with evidence of increased cell death in MDAMB231 cells, but a relative protection in MCF12A cells. A novel model was used to apply these techniques in vivo, and although mice fed on a low protein diet during high dose doxorubicin treatment had increased mean survival and smaller tumour sizes, evidence suggested that autophagy is protecting a population of cells within these tumours. Conclusions - This novel approach to tumour sensitization could have several implications in the context of cancer therapy, and given the delicate relationship that autophagy has with the cancer microenvironment, efforts to determine the mechanisms involved in autophagy and sensitization could lead to new and innovative treatment opportunities for cancer management. / AFRIKAANSE OPSOMMING: Inleiding – As gevolg van hul skeiding van die oorpronklike vaskulêre netwerk, ontwikkel soliede gewasse areas met beperkte toegang tot noodsaaklike voedingstowwe. Die bevordering van 'n proses wat as makro-autofagie bekend staan, kan die handhawing van intrasellulêre aminosuur vlakke fasiliteer. Voorafgenoemde proses word waarskynlik deur die afbreek van sitoplasmiese proteïene teweegebring om sodoende vir makro-molekulêre biosintese en ATP produksie beskikbaar te kan wees. Verskeie studies dui daarop dat sommige kankersoorte die vermoë het om autofagie tydelik te verhoog, en daarby sel oorlewing gedurende metaboliese stress te verleng. Die geldigheid van hierdie eise word evalueer wanneer 'n algemeen beskikbare borskanker sellyn, en 'n borsepiteelsellyn in hierdie studie van aminosure verhonger word. Verder, veronderstel ons dat akute aminosuur ontneming gedurende behandeling 'n verhoogde sensitiwiteit van MDAMB231 selle tot doxorubicin toksisiteit tot gevolg sal hê, maar terselfdetyd die middel se sitotoksiese newe-effekte in MCF12A selle sal beperk. Metodes en studie ontwerp – Menslike borskanker- (MDAMB231) en bors epiteel selle (MCF12A) wat in volledige groeimedium gekweek is, is vergelyk met selle wat in aminosuur vrye medium gekweek is. Basislyn autofagie-vlakke is gemonitor deur die gebruik van klassieke autofagie proteïen merkers (LC3-II en beclin-1) en die asidiese kompartementalisering in selle (Lysotracker™ rooi kleurstof) saam met autofagie inhibisie (bafilomycin A1 and ATG5 siRNA). Sellewensvatbaarheid is deur die gebruik van verskeie tegnieke, insluitend caspase 3/7 aktiwiteit, gemonitor. ATP-vlakke is deur die gebruik van 'n bioluminiserende tegniek gemeet, terwyl massa-spektrometrie-gebaseerde “proteomics” gebruik is om sel aminosuur vlakke te kwantifiseer. Soortgelyke tegnieke is gebruik om autofagie gedurende doxorubicin behandeling waar te neem, terwyl sellulêre doxorubicin lokalisasie deur die gebruik van immunofluoresensie mikroskopie gemonitor is. Ten slotte, is 'n unieke GFP-LC3 muismodel in hierdie studie ontwikkel. Hierdie model is gebruik om autofagie en caspase aktiwiteit in gewasse in vivo te bestudeer tydens proteïen beperking en doxorubicin behandeling. Resultate – Aminosuur ontneming het tot 'n tydelike verhoging in autofagie na ongeveer 6 ure van aminosuur verhongering in MDAMB231 selle gelei. Die aminosuur inhoud van hierdie selle het op 'n autofagie-afhanklike manier behoue gebly. Hierdie verskynsel het met die handhawing van ATP-vlakke gekorreleer. Autofagie inhibisie gedurende hierdie kondisies het 'n verlaging in aminosuur en ATP-vlakke teweeggebring, sowel as vermeerderde tekens van seldood tot gevolg gehad. MCF12A selle het 'n groter toleransie tot aminosuur verhongering tydens die 24 uur aminosuur verhongeringsperiode getoon. Getuienis het aangedui dat autofagie belangrik vir die handhawing van aminosuur en ATP-vlakke in hierdie selle was, en gehelp het om verhongerings-geïnduseerde seldood te voorkom. Verder het data gewys dat aminosuur ontrekking tot verminderde sellulêre asiditeit in MDAMB231 selle, en verhoogde asiditeit in MCF12A selle gedurende doxorubicin behandeling gelei het. Hierdie veranderinge stem ooreen met getuienis van toenemende seldood in MDAMB231 selle, maar 'n relatiewe beskerming in MCF12A selle. 'n Unieke model was gebruik om hierdie tegnieke in vivo toe te pas. Alhoewel verhoogde oorlewing en kleiner gewasse in muise op 'n lae proteïen dieet gedurende hoë dosis doxorubicin behandeling opgemerk is, het bewyse voorgestel dat autofagie 'n populasie selle binne die gewasse beskerm. Gevolgtrekkings – Hierdie unieke benadering tot tumor sensitisering kan verskeie implikasies in die konteks van kanker behandeling hê. Gegewe die delikate verhouding van autofagie met die kanker mikro-omgewing, kan pogings om die meganismes betrokke in autofagie en sensitisering te bepaal, tot nuwe en innoverende behandelings vir kanker lei.
4

Solute Carriers in Metabolism : Regulation of known and putative solute carriers in the central nervous system

Lekholm, Emilia January 2017 (has links)
Solute carriers (SLCs) are membrane-bound transporter proteins, important for nutrient, ion, drug and metabolite transport across membranes. A quarter of the human genome codes for membrane-bound proteins, and SLCs make up the largest group of transporter proteins. Due to their ability to transport a large repertoire of substances across, not just the plasma membrane, but also the membrane of internal organelles, they hold a key position in maintaining homeostasis affecting metabolic pathways. Unfortunately, some of the more than 400 identified SLCs are still not fully characterized, even though a quarter of these are associated with human disease. In addition, there are about 30 membrane-bound proteins with strong resemblance to SLCs, of which very little is known. The aim of this thesis is to characterize some of these putative SLCs, focusing on their localization and function in the central nervous system. Since many of the known SLCs play a vital part in metabolism and related pathways, the response to different nutritional conditions has been used as a key method. MFSD14A and MFSD14B, characterized in Paper I, are putative SLCs belonging to the Major Facilitator Superfamily (MFS) and found to be neuronal, differentially expressed in the mouse central nervous system and transiently upregulated in mouse embryonic cortex cultures due to amino acid deprivation. They were also altered in areas of the mouse brain after starvation as well as after high fat diet. In Paper II, the effect on gene regulation due to complete amino acid starvation was monitored in a mouse hypothalamic cell line and 47 different genes belonging to SLCs, or putative SLCs, were found to be affected. Of these, 15 genes belonged to already known amino acid transporters, whereas 32 were putative SLCs with no known function or SLCs not known to react to amino acids. The three SV2 proteins, SV2A, SV2B and SV2C, were studied in Paper III using human neuroblastoma cell lines. The high metabolic state of cancers often result in an upregulation and alteration of transporter proteins, and alterations of the SV2 proteins were found following different treatments performed in this study. Paper IV focused on putative SLCs of MFS type and their role in glucose metabolism. Mouse embryonic cortex cultures were subjected to glucose starvation and the gene expression of 19 putative transporters were analyzed. All but four of the putative transporters were affected either at 3h or 12h of glucose deprivation. In conclusion, several SLCs and putative SLCs studied in this thesis are strongly affected by alteration in metabolism, either due to amino acids or glucose or both. This makes the putative SLCs dynamic membrane-bound proteins, possibly transporters, highly affected by nutritional status and most likely regulated to maintain homeostasis.
5

Transcriptional Regulation and Differentiation in Saccharomyces and Aspergillus: jlbA, RPS26, and ARO3/4 / Transkriptionelle Regulation und Differzierung in Saccharomyces und Aspergillus: jlbA, RPS26, and ARO3/4

Strittmatter, Axel 06 May 2003 (has links)
No description available.

Page generated in 0.1399 seconds