• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 50
  • 45
  • 29
  • 12
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 344
  • 127
  • 62
  • 62
  • 60
  • 56
  • 50
  • 42
  • 40
  • 37
  • 33
  • 32
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Glucocorticoid-Induced Apoptosis: The Role of Reactive Oxygen Species and the Proteasome

Pickle, Sarah Rachel 25 April 2005 (has links)
No description available.
102

Suppression der Hypertrophie kardialer Myozyten durch Inhibition des Ubiquitin-Proteasom-Systems

Dreger, Henryk 20 June 2003 (has links)
Hypertrophie bezeichnet eine zelluläre Anpassungsleistung, die durch vermehrte Arbeitsbelastung ausgelöst wird und durch Zunahme von Zellgröße und Proteinsynthese sowie durch Veränderungen der Genexpression bei konstanter Zellzahl gekennzeichnet ist. Beim Ubiquitin-Proteasom-System handelt es sich um den wichtigsten intrazellulären Proteinabbaumechanismus eukaryontischer Zellen. Darüber hinaus spielt es eine wichtige Rolle im regulierten Abbau zellulärer Signalmediatoren und Transkriptionsfaktoren. In einem Hypertrophiemodell mit neonatalen Rattenkardiomyozyten wurde die Wirkung von Proteasominhibitoren auf die Ausbildung einer Hypertrophie untersucht. Behandlung mit Proteasominhibitoren (MG132, MG262) führte dabei zu einer dosisabhängigen Reduktion des Effekts der eingesetzten hypertrophieinduzierenden Agonisten (Isoproterenol, Angiotensin II, Phenylephrin). So konnte mit Hilfe morphometrischer Analysen Phalloidin-gefärbter Kardiomyozyten eine Verringerung des Zellwachstums gezeigt werden. Western Blots belegten eine verringerte Expression von Hypertrophiemarkerproteinen (beta-myosin heavy chain, alpha-sarcomeric actin, alpha-smooth muscle actin). Analog zu diesen Befunden konnte in einem Reportergenassay die Abnahme der Expression des brain natriuretic peptide (BNP) gezeigt werden. Eine reduzierte RNA- und Proteinsynthese konnte mit Hilfe der Inkorporation radioaktiver Substrate nachgewiesen werden. Als Nachweis für die effiziente Inhibition des Proteasoms durch MG132 dienten Western Blots akkumulierter, polyubiquitinierter Proteine, die reduzierte proteasomale Degradation fluorogener Substrate sowie die Akkumulation eines grün fluoreszierenden Proteins nach Transfektion mit einem Ubiquitin-GFP-Konstrukt. Als mögliche Mechanismen des antihypertrophen Effekts der Proteasominhibitoren konnten eine verringerte Aktivierbarkeit der MAP Kinasen ERK 1/2 (Western Blots) sowie eine reduzierte Aktivität des Transkriptionsfaktor NFkappaB (Reportergenassay) identifiziert werden. / Myocardial hypertrophy is an important adaptive response of the heart to increased workload. It is characterized by an increase in cell size and protein synthesis, and alterations in gene expression. The ubiquitin-proteasome-system is the major pathway for intracellular protein degradation in eucaryotic cells. It plays a major role in the regulated degradation of central signal mediators and transcription factors. In a model system of neonatal rat cardiomyocytes we investigated the effects of proteasome inhibitors on myocardial hypertrophy. Treatment with specific proteasome inhibitors reduced the hypertrophic effects of all used agonists (e.g. isoproterenol, phenylephrin) dose-dependently: 0.05-1 µM MG132 resulted in a marked reduction of cell size as determined by morphometric analysis of phalloidin-stained myocytes. Moreover, western blot analysis showed a concentration-dependently reduced expression of hypertrophic marker proteins (beta-myosin heavy chain, alpha-sarcomeric actin, alpha-smooth muscle actin). This correlated well with a suppressed expression of brain natriuretic peptide in reportergene assays. Reduced RNA and protein synthesis was determined by incorporation of radioactively labeled substrates. Efficient inhibition of the proteasome by MG132 was confirmed by increased accumulation of multi-ubiquitinated proteins in western blot analysis, by reduced degradation of fluorogenic substrates and by accumulation of a ubiquitin-conjugated variant of the green fluorescent protein. Suppression of cardiomyocyte hypertrophy by proteasome inhibition corresponded to reduced ERK 1/2 activation (determined by phospho-specific antibodies) and decreased NFkappaB activation (determined by luciferase assays).
103

Inhibitory effect on the proteasome regulatory subunit, RPN11/POH1, with the use of Capzimin-PROTAC to trigger apoptosis in cancer cells

Holmqvist, Andreas January 2020 (has links)
Most patients diagnosed with cancer will receive systematic chemotherapy at some point during their illness, which almost always cause severe side effects for the patients such as, anemia, nausea and vomiting. The problems with today’s chemotherapy is not only that it cause severe side effects, but also that the cancer may develop resistance to the therapy, which is why the development of a new type of therapeutic agent is in dire need. The ubiquitin proteasome system (UPS) is a vital machinery for the cancer cells to maintain protein homeostasis, which also make them vulnerable to any disruption of this system. In recent years, a new technology has been developed that utilize the UPS by chemically bringing an E3 ubiquitin ligase into close proximity of a protein of choice and tagging the protein with ubiquitin for degradation. This technology is called proteolysis targeting chimera (PROTAC). In this project, we managed to theoretically develop a new type of cancer therapeutic agent, that utilize the PROTAC system together with the first-in-class proteasome regulatory subunit, POH1, inhibitor Capzimin as a warhead. By using Capzimin as a warhead it should be possible to polyubiquitinate POH1, and thus induce proteotoxic stress in the cancer cells to trigger apoptosis. This theoretically developed drug is therefore called Capzimin-PROTAC, which should be able to trigger apoptosis in cancer cells, and at the same time being relatively safe to normal healthy cells.
104

The 20S Proteasome as a Target for Novel Cancer Therapeutics: Development of Proteasome Inhibitors and Proteolysis-Targeting Chimeras (PROTACs)

Tokarski, Robert James, II 28 September 2020 (has links)
No description available.
105

O sistema ubiquitina-proteassoma no modelo de hipertrofia cardíaca induzida por hormônio tireoidiano. / The ubiquitin proteasome system in thyroid hormone-induced cardiac hypertrophy model.

Lino, Caroline Antunes 13 June 2013 (has links)
Disfunções da glândula tireóide são, frequentemente, associadas a manifestações cardiovasculares e, em situações de hipertireoidismo, o coração hipertrofia. A hipertrofia cardíaca (HC) consiste em uma resposta adaptativa caracterizada pelo aumento de síntese de proteínas estruturais. O Sistema Ubiquitina Proteassoma (UPS) corresponde ao principal mecanismo de proteólise intracelular e crescentes evidências sugerem seu envolvimento no desenvolvimento da HC. O objetivo do presente estudo foi avaliar a modulação do UPS no tecido cardíaco de animais submetidos ao hipertireoidismo. Os resultados referentes ao aumento da atividade e expressão do proteassoma (PT) cardíaco apresenta-se mais contundente no grupo tratado por 7 dias, período em que a HC já encontra-se estável. Ao término de 14 e 21 dias, a modulação desse sistema tende à normalização. Os resultados obtidos atestam evidências da literatura que sugerem o aumento da atividade do PT cardíaco como resposta compensatória ao aumento de síntese proteica. / Thyroid gland disorders are often associated with cardiovascular events and hyperthyroidism state promotes cardiac hypertrophy (CH). CH consists in adaptive response characterized by increased synthesis of structural proteins. The Ubiquitin Proteasome System (UPS) is the major mechanism of intracellular proteolysis and increased evidences suggest its involvement in the development of CH. The aim of this study was to evaluate the modulation of UPS in cardiac tissue of animals subjected to hyperthyroidism. The results related to the increased proteasome (PT) activity and expression in the heart was more accentuated in the group treated for 7 days, when the CH process finds stable. At the end of 14 and 21 days of hyperthyroidism, the modulation of cardiac UPS achieves standard values. These results suggest an increased activity of cardiac PT as a compensatory response to protein synthesis induced by thyroid hormones.
106

Charakterisierung der proteasomalen Genregulation unter Biogeneseaspekten

Heyken, Dirk 06 October 2005 (has links)
Das 26S Proteasom ist ein großer Proteinase-Komplex, der aus 32 unterschiedlichen Untereinheiten aufgebaut ist. Das 26S Proteasom ist involviert in die ATP-abhängige De-gradation von ubiquitinierten Proteinen, die eine Vielfalt an zellulären Prozessen wie Signaltransduktion, Stressantwort, transkriptionelle Regulation, Chromosomen-Segregation, DNA-Reparatur, Zellzyklus-Steuerung und die Prozessierung von Peptiden für die MHC I Antigen Präsentation regulieren. Die Prozessierung von Peptiden wird ver-stärkt durch eine Interferon ? stimulierbare Variante des Proteasoms übernommen, dem so genannten Immunoproteasom. Die Biogenese dieses großen Komplexes ist ein komplizierter Mechanismus, welcher Expression und Assemblierung der proteasomalen Untereinheiten beinhaltet. In Eukaryonten sind für die Assemblierung und Maturierungsprozesse Helferproteine notwendig. In Mammalia übernimmt diese Funktion das Proteasom maturation Protein POMP. POMP ist wahrscheinlich auch bei der Biogenese des Immunoproteasoms von Bedeutung, da die mRNA von POMP durch Interferon ? induziert wird. Um die Regulation dieser Induktion zu untersuchen wurde der Promotor von POMP für die erste Fragestel-lung dieser Arbeit charakterisiert und seine Induzierbarkeit durch Interferon ? untersucht. Es konnte nachgewiesen werden, dass die erhöhte mRNA-Menge durch Interferon ?-Stimulation nicht auf eine Promotor-Induktion, sondern auf post-transkriptionelle Ereig-nisse zurückzuführen ist. In der zweiten Fragestellung dieser Arbeit sollte die Genregulation des Proteasoms unter Stressbedingungen untersucht werden. Der Stress wurde durch Inhibition der proteolyti-schen Aktivität des Proteasoms ausgelöst. Wie seit längerem bekannt ist, werden in Bakterien und Hefe die ATP-abhängigen Pro-teasekomplexe über ein kompliziertes regulatorisches Netzwerk gesteuert. Über die transkriptionelle Regulation des Mammalia Proteasoms war bisher wenig bekannt. Im Rahmen der hier vorliegenden Dissertation konnte gezeigt werden, dass die Reduktion der proteolytischen Aktivität des Proteasoms durch Behandlung von Mammalia-Zellen mit Proteasom-Inhibitoren durch eine gesteigerte Genexpression der proteasomalen Unter-einheiten kompensiert wird. Alle proteasomalen Untereinheiten werden konzertiert hoch-reguliert. Exemplarisch an der proteasomalen Untereinheit Rpt1(S7) und an dem Matu-rierungsfaktor POMP konnte eine posttranskriptionelle Regulation unter Proteasom-Inhibitor Einfluss ausgeschlossen werden. Die vom Inhibitor induzierte Genaktivierung resultiert in einer de novo Protein-Synthese und führt daher zu einer gesteigerten de no-vo Biogenese des Proteasoms. Dieses Phänomen ist begleitet durch eine vermehrte Ex-pression vom POMP. Damit konnte erstmals gezeigt werden, dass die Menge an Protea-som in Mammalia auf transkriptioneller Ebene reguliert wird und dass vermutlich ein au-toregulatorischer feedback-Mechanismus eine verminderte proteolytische Aktivität kom-pensieren kann. Diese Daten werden durch Ergebnisse der CAT-Reportergen-Assays des ?1(?)-Promotors gestützt. Exemplarisch konnte gezeigt werden, dass die Aktivität dieses Promotors in Anwesenheit von Proteasom-Inhibitoren ansteigt. Die induzierbare Promotorregion konnte bis auf 130 bp eingegrenzt werden. Innerhalb dieser Promotorse-quenz konnte die Bindung eines Transkriptionsfaktors (Nrf2) durch EMSA-Technik nach-gewiesen werden. / The 26 S proteasome is a high molecular mass proteinase complex that is built by of least 32 different protein subunits. The 26S proteasome is involved in the ATP-dependent degradation of ubiquitinated proteins that regulate a variety of cellular proc-esses including signal transduction, stress response, transcriptional control, chromosome segregation, DNA repair, cell cycle progression and processing of antigenic Peptides for the MHC I pathway. Biogenesis of this large complex is a complicated process compris-ing expression, assembly and maturation of all subunits. This crucial step is supported by POMP (proteasome maturation protein). POMP mRNA is induced by Interferon gamma (IFN ?). We investigated this phenomenon via Reportergen assays with the Promoter re-gion of POMP. POMP mRNA seems not to be regulated on a trancriptional level, but on posttranscriptional events. ATP-dependent protease complexes in bacteria and yeast are systems that undergo a highly sophisticated network of gene expression regulation. However, regulation of mammalian proteasome gene expression has been neglected so far as a possible control mechanism for the amount of proteasomes in the cell. We showed that treatment of cells with proteasome inhibitors and the concomitant impairment of proteasomal enzyme activ-ity induce a transient and concerted up-regulation of all mammalian 26S proteasome subunit mRNAs. Proteasome inhibition in combination with inhibition of transcription re-vealed that the observed up-regulation is mediated by coordinated transcriptional activa-tion of the proteasome genes and not by post-transcriptional events. Our experiments also demonstrate that inhibitor-induced proteasome gene activation results in enhanced de novo protein synthesis of all subunits and in increased de novo formation of the pro-teasome. This phenomenon is accompanied by enhanced expression of the proteasome maturation factor POMP. Thus, our experiments present first evidence that the amount of proteasomes in mammalia is regulated at the transcriptional level and that an auto regu-latory feedback mechanism exists that allows the compensation of reduced proteasome activity. These data are also supported by CAT reportergene assays with the protea-somal subunit ?1(?)-promoter. Exemplary we show the increase of CAT activities in re-sponse to proteasome inhibition. We can restrict the region of the promoter to 130 bp and identify Nrf2 as a possible candidate for a transcription factor via EMSA.
107

Funktionelle Charakterisierung des 19S regulatorischen Komplexes des 20S Proteasoms sowie Analyse der Biogenese des 20S Proteasoms

Braun, Beate 18 December 2001 (has links)
Das 20S Proteasom spielt zusammen mit seinem 19S Regulator als 26S Proteasomkomplex eine zentrale Rolle beim Abbau von Proteinen in eukaryotischen Zellen. Dem 19S Regulator wird dabei die Funktion der Substraterkennung und -entfaltung sowie die Beteiligung an der Translokation der entfalteten Substrate zum katalytischen Zentrum zugeordnet. In dieser Arbeit konnte erstmals gezeigt werden, daß der 19S Regulator chaperonähnliche Eigenschaften besitzt, dadurch also durchaus die Entfaltung der Proteinsubstrate bewirken kann. Durch den 19S Regulator war das 26S Proteasom in der Lage, einen Teil denaturierter Citratsynthase, eines Modellsubstrats für die Untersuchung von Chaperonaktivitäten, ATP-abhängig zum nativen Zustand zurückzufalten. Desweiteren führte die Anwesenheit des 19S Regulators bzw. des 26S Proteasoms in Abwesenheit von ATP zu einer Aggregationshemmung denaturierter Citratsynthase. Auch konnte die direkte Interaktion zwischen der Citratsynthase und dem 26S Proteasom bzw. dem 19S Regulator durch Glyceroldichtegradientenzentrifugation gezeigt werden. Diese chaperonähnlichen Eigenschaften des 19S Regulators konnten dem aus sechs ATPasen und zwei nicht-ATPasen bestehenden Base-Subkomplex zugeordnet werden. Aufgrund der Wechselwirkungen zwischen dem 19S Regulator und dem 20S Proteasom und damit möglicherweise verbundenen Konformationsänderungen in den Komplexen, wurde postuliert, daß der 19S Regulator auch auf die Biogenese, also die Assemblierung und Reifung des 20S Proteasoms einen Einfluß haben könnte. Es konnte gezeigt werden, daß Mutationen in den 19S ATPasen zu einer Anreicherung der unprozessierten proteasomalen 20S Untereinheit beta5 bei erhöhter Temperatur führen. Die Ursache dieses Anreicherungseffektes konnte nicht aufgeklärt werden. Der Effekt läßt sich nicht auf eine Hochregulation der m-RNA-Synthese der beta5-Untereinheit zurückführen. Die Beteiligung des 19S Regulators an frühen Assemblierungsstadien des 20S Proteasoms ist aufgrund der Analyse der mit dem Maturierungsfaktor Ump1 im Komplex vorliegenden Proteine ebenfalls unwahrscheinlich. Eine Beteiligung des 19S Regulators an einem der letzten Schritte der 20S Proteasomenbiogenese, beispielsweise an der Katalyse der Prozessierung der beta-Untereinheiten, ist eher vorstellbar, konnte aber nicht eindeutig gezeigt werden. Auf die Prozessierung der beta-Untereinheiten hat aber auch die katalytische Aktivität der beta-Untereinheiten einen nicht unwesentlichen Einfluß. So werden die katalytisch aktiven Untereinheiten durch Autokatalyse zu ihrer aktiven Form prozessiert und bewirken die Prozessierung der katalytisch inaktiven Untereinheiten beta6 und beta7. Dies konnte so auch durch Inaktivierung der beta2i-Untereinheit bestätigt werden. Die Expression der inaktiven Maus-beta1iT1A-Untereinheit in humanen T2-Zellinien verhinderte ihre eigene vollständige Prozessierung, hatte aber auch Einfluß auf die Prozessierung von beta7 und von inaktiv exprimierten beta1i (Maus-beta1iT1A). / In eukaryotic cells the protein degrading proteasome/ubiquitin system is involved in a wide variety of regulatory processes. The 26S proteasome is composed of two subcomplexes, a proteolytic core (20S) and a regulatory complex (19S). It is proposed that the proteins of the 19S regulatory complex can recognize and unfold the substrates. Furthermore the RC participates in translocation of the substrates into the proteasomes inner chamber were peptide bond hydrolysis occurs. This work shows that the proteasome exhibits an ATPdependent chaperon-like activity on citrate synthase, a model substrat for chaperones. Human and yeast proteasomes stimulated the recovery of the native structure of citrate synthase in an ATPdependent manner. Furthermore the 19S complex was able to supress the aggregation of denatured citrate synthase. Glycerol gradient analysis indicated that proteasome facilitates the refolding of citrate synthase through the formation of citrate synthase-proteasome complexes as expected for a chaperon-like mechanism. The chaperonlike activity was mapped to the base of the 19S regulatory complex. The RC could be able to unfold protein substrates in the 26S proteasome by this activity. The crystal structure of S. cerevisiae 20S proteasome shows a closed gate to the proteasome interiors. The 19S regulatory complex may induce conformational changes not only to open the protease cavity but also to assit in beta-subunit processing during 20S proteasome biogenesis. To test this hypothesis some yeast 19S ATPase mutant strains were analyzed for defective 20S proteasome maturation by following the processing of beta5-subunit. This work has shown that some mutations in these ATPases led to an accumulation of the unprocessed proteasomal beta5-subunit at restricted temperature. This effect was not due to the upregulation of beta5 mRNA transcription. It is not very likely that proteins of the RC participate in early steps of proteasome biogenesis, since they could not be found in precurser intermediates containing the maturation factor Ump1p. However, they might be important for later assembly steps. During biogenesis five prosequence containing beta subunits have to be processed. This proceeds via a two-step mechanism involving autocatalytic or transcatalytic processing by neighbouring subunits. The proposed mechanism could be confirmed by inactivation of the beta2i subunit via substitution of the active site Threonin1 against Alanin (beta2iT1A). The inactivation blocked the autocatalysis of beta2i and influenced the processing of beta7 and that of inactivated beta1i (beta1iT1A).
108

Designing models for the dynamics of T-cell clones

Luciani, Fabio 19 May 2006 (has links)
Die Hauptaufgabe des Immunsystems ist der Schutz des Koerpers gegen den externen Angriff von Viren, Bakterien und sonstigen potentiellen Krankheitserregern, sowie die Vermeidung von weiteren Infektionen durch bereits erfahrene Pathogene, die durch die Errichtung eines immunologischen Gedaechtnisses vermieden werden. Zytotoxische T-Zellen sind die Protagonisten der spezifischen Immunantwort beim Bekaempfen von intrazellulaeren Infektionen. Das Proteasom spielt eine wichtige Rolle in der Produktion von antigenischen Peptiden dar, die, sobald sie von MHC-Molekurle praesentiert werden, furr die Aktivierung von T-Zellen in der Immunantwort verantwortlich sind. Diese Thesis praesentiert eine Studie, die belegt, dass die Laenge und Groesse von Fragmenten, die waehrend der Proteasomedegradation entstehen, sehr von der Groesse der Schranke abhaengt, die den Substratfluss durch das Proteasom steuert. Das hier vorgestellte Modell kann daher in der Quantifizierung des antigenischen Umsatzes und deren Praesentation von grossem Nutzen sein. Wir stellen die Vermutung an, dass die Ersetzung von konstitutivem Proteasom durch Immunoproteasom, die waehrend einer Immunantwort in antigenpraesentierenden Zellen stattfindet, das T-Zell-Repertoire stark veraendert und dabei hilft, eine schnelle und effektive Immunreaktion zu starten. Die Schlussfolgerungen dieser Dissertation sind: Die Kinetik der antigenischen Praesentation und ihre Quantifizierung sind wichtige Aspekte fuer das Verstehen der Instandhaltung und Funktionalitaet des T-Zell-Repertoires. Das Immunsystem nutzt die Kinetik des Proteasoms und den Wettbewerb um Ressourcen zwischen den T-Zellen zur Entwicklung von cleveren Strategien gegen Infektionen aus, ohne dabei auf die Produktion von teueren neuen Ressourcen zururckgreifen zu m"ussen. / The major tasks of the immune system are the protection of the body from undesired external pathogenic attack and the prevention of further and already experienced challenges, which are avoided by the establishment of immunological memory. The proteasome machinery plays a crucial role in the generation of antigenic peptides, which are responsible for the activation of T-cell during an immune response. In this PHD thesis the study of the T-cells dynamics and their homeostasis has been investigated. In particular we focused on the immunological function of the intracellular protein degradation. This thesis evidenced that the length and the amount of fragments generated by the proteasome degradation fairly depend on the size of the gates regulating the flux of substrate through the proteasome. This model captures the known characteristics of proteasomal degradation, and can therefore help to quantify MHC antigen processing and presentation. A model dealing with the dynamics of cytotoxic T-cells and the role of the antigen presentation in shaping the T-cell repertoire has been proposed. This model shows that the replacement of constitutive proteasome with the immunoproteasome re-shapes significantly the T-cell clone repertoire and helps to mount a fast and effective immune response. The last part of this thesis has been devoted to the population dynamics of cytotoxic T-cells over a long timescale. Stochastic models describing the maintenance of T-cell memory clones have been proposed. The conclusions are: the kinetics of the antigen presentation and its quantification are critical aspects for the understanding of the maintenance and the functionality of the T-cell repertoire. The Immune system takes advantage of the kinetics of proteasome and the competition for resources in the T-cell repertoire to develop a clever strategy to challenge infections without expensive production of new resources.
109

Regulation des Ubiquitin-Proteasom-Systems in Säugetierzellen durch den Transkriptionsfaktor TCF11

Steffen, Janos 09 September 2010 (has links)
Das Ubiquitin-Proteasom-System (UPS) ist das wichtigste System für den Abbau von nicht mehr benötigten oder beschädigten Proteinen innerhalb der eukaryotischen Zelle und ist somit an der Aufrechterhaltung der zellulären Homöostase beteiligt. Ein Abfall der proteasomalen Aktivität führt zu intrazellulärem Stress. Die Zelle wirkt diesem Abfall entgegen, indem sie die proteasomalen Gene verstärkt exprimiert und dadurch die Neubildung von 26S Proteasomen bewirkt. Während in der Bäckerhefe Saccharomyces cerevisiae mit Rpn4 der Transkriptionsfaktor für die verstärkte Expression identifiziert wurde, war dieser in Säugetieren noch nicht bekannt. In der vorliegenden Arbeit konnte TCF11 (transcription factor 11) als der verantwortliche Transkriptionsfaktor identifiziert werden, der in der humanen Endothelzelllinie Ea.hy926 die Transkription der proteasomalen Gene nach Proteasominhibition induziert. Unter physiologischen Bedingungen ist TCF11 ein N-glykosyliertes ER-ständiges Membranprotein, welches durch die ER-assoziierte Protein Degradation, unter der Mitwirkung des E3-Enzyms HRD1 und der AAA-ATPase p97, schnell abgebaut wird. Nach der Proteasominhibition kommt es zur Akkumulation von oxidierten Proteinen, und TCF11 wird aktiviert und in den Zellkern transportiert. Im Zellkern bindet TCF11 an AREs (antioxidant response element) in den proteasomalen Promotoren und aktiviert dadurch die Transkription der proteasomalen Gene. Darüber hinaus reguliert TCF11 auch die Expression von zahlreichen Enzymen, die die Ubiquitinierung von Proteinen katalysieren. Dadurch wird die zelluläre Homöostase wiederhergestellt und TCF11 sehr wahrscheinlich durch die neu gebildeten Proteasomen abgebaut. Die Ergebnisse der vorliegenden Arbeit zeigen auf, dass die Integrität des UPS nach Proteasominhibition in der humanen Endolthelzelllinie Ea.hy926 über einen TCF11 abhängigen Rückkopplungsmechanismus aufrechterhalten wird. / The ubiquitin-proteasome-system (UPS) is the most important system for regulated protein degradation in eukaryotes. Therefore it is involved in the regulation of cellular homeostasis. Reduced proteasome activity results in proteotoxic stress. To counteract for reduced proteasome activity, eukaryotic cells enhance proteasome gene expression, which results in formation of new 26S proteasomes and recovery of physiological conditions. While in bakers yeast Saccharomyces cerevisiae the transcription factor Rpn4 is responsible for enhanced proteasome gene expression in response to proteasome inhibition, in mammals the responsible transcription factor was unknown. In this thesis, transcription factor TCF11 (transcription factor 11) was identified as a key regulator for 26S-proteasome formation in the human cell line Ea.hy926 to compensate for reduced proteolytic activity. Under non-inducing conditions N-glycosylated TCF11 resides in the endoplasmic reticulum (ER) membrane, where TCF11 is targeted to ER-associated protein degradation system requiring the E3-ubiquitin ligase HRD1 and the AAA-ATPase p97. Proteasome inhibitors trigger the accumulation of oxidant-damaged proteins, and promote the nuclear translocation of TCF11 from the ER, permitting activation of proteasome gene expression by binding of TCF11 to antioxidant response elements (ARE) in their promoter regions. Furthermore TCF11 controlls the expression of additional UPS-related genes. Thus the transcriptional feedback loop regulating human proteasome dependent protein degradation to counteract proteotoxic stress caused by proteasome inhibition was uncovered.
110

The Epigenetic Regulation of Cytokine Inducible Mammalian Transcription by the 26S Proteasome

Koues, Olivia I 08 July 2009 (has links)
It is evident that components of the 26S proteasome function beyond protein degradation in the regulation of transcription. Studies in yeast implicate the 26S proteasome, specifically the 19S cap, in the epigenetic regulation of transcription. Saccharomyces cerevisiae 19S ATPases remodel chromatin by facilitating histone acetylation and methylation. However, it is unclear if the 19S ATPases play similar roles in mammalian cells. We previously found that the 19S ATPase Sug1 positively regulates transcription of the critical inflammatory gene MHC-II and that the MHC-II promoter fails to efficiently bind transcription factors upon Sug1 knockdown. MHC-II transcription is regulated by the critical coactivator CIITA. We now find that Sug1 is crucial for regulating histone H3 acetylation at the cytokine inducible MHC-II and CIITA promoters. Histone H3 acetylation is dramatically decreased upon Sug1 knockdown with a preferential loss occurring at lysine 18. Research in yeast indicates that the ortholog of Sug1, Rpt6, acts as a mediator between the activating modifications of histone H2B ubiquitination and H3 methylation. Therefore, we characterized the role the 19S proteasome plays in regulating additional activating modifications. As with acetylation, Sug1 is necessary for proper histone H3K4 and H3R17 methylation at cytokine inducible promoters. In the absence of Sug1, histone H3K4me3 and H3R17me2 are substantially inhibited. Our observation that the loss of Sug1 has no significant effect on H3K36me3 implies that Sug1’s regulation of histone modifications is localized to promoter regions as H3K4me3 but not H3K36me3 is clustered around gene promoters. Here we show that multiple H3K4 histone methyltransferase subunits bind constitutively to the inducible MHC-II and CIITA promoters and that over-expressing one subunit significantly enhances promoter activity. Furthermore, we identified a critical subunit of the H3K4 methyltransferase complex that binds multiple histone modifying enzymes, but fails to bind the CIITA promoter in the absence of Sug1, implicating Sug1 in recruiting multi-enzyme complexes responsible for initiating transcription. Finally, Sug1 knockdown maintains gene silencing as elevated levels of H3K27 trimethylation are observed upon Sug1 knockdown. Together these studies strongly implicate the 19S proteasome in mediating the initial reorganization events to relax the repressive chromatin structure surrounding inducible genes.

Page generated in 0.1044 seconds