Spelling suggestions: "subject:"anda reconnaissance"" "subject:"anda meconnaissance""
111 |
MITRE Attack framework adaptation in UAV usage during surveillance and reconnaissance missionsGreer, Jeffrey, IV 10 May 2024 (has links) (PDF)
As unmanned aerial vehicles (UAVs) increasingly become integral to surveillance and reconnaissance (S&R) operations, their susceptibility to cyber threats poses significant risks to operational integrity. The current cybersecurity protocols often fail to address UAV operations’ unique vulnerabilities and challenges in S&R contexts, highlighting a gap in specialized cybersecurity strategies. This research adapts the MITRE ATTACK framework to enhance cybersecurity approaches, safeguarding UAVs against evolving cyber threats. This thesis maps existing vulnerabilities against comprehensive tactics, techniques, and procedures (TTPs) through a scenario-based analysis. Hypothetical and practical S&R operation case studies demonstrate the applicability of proposed cybersecurity strategies, validating their effectiveness in mitigating specific threats and the need for more specified cybersecurity protocols. The findings advocate for continuous innovation and vigilance in UAV cybersecurity, contributing to the protection of UAVs in S&R missions and emphasizing the dynamic nature of cybersecurity challenges in UAV operations.
|
112 |
Robustness of multimodal 3D object detection using deep learning approach for autonomous vehicles / Robustness of multimodal 3D object detection using deep learning approach fo autonomous vehiclesRamezani, Pooya 27 January 2024 (has links)
Dans cette thèse, nous étudions la robustesse d’un modèle multimodal de détection d’objets en 3D dans le contexte de véhicules autonomes. Les véhicules autonomes doivent détecter et localiser avec précision les piétons et les autres véhicules dans leur environnement 3D afin de conduire sur les routes en toute sécurité. La robustesse est l’un des aspects les plus importants d’un algorithme dans le problème de la perception 3D pour véhicules autonomes. C’est pourquoi, dans cette thèse, nous avons proposé une méthode pour évaluer la robustesse d’un modèle de détecteur d’objets en 3D. À cette fin, nous avons formé un détecteur d’objets 3D multimodal représentatif sur trois ensembles de données différents et nous avons effectué des tests sur des ensembles de données qui ont été construits avec précision pour démontrer la robustesse du modèle formé dans diverses conditions météorologiques et de luminosité. Notre méthode utilise deux approches différentes pour construire les ensembles de données proposés afin d’évaluer la robustesse. Dans une approche, nous avons utilisé des images artificiellement corrompues et dans l’autre, nous avons utilisé les images réelles dans des conditions météorologiques et de luminosité extrêmes. Afin de détecter des objets tels que des voitures et des piétons dans les scènes de circulation, le modèle multimodal s’appuie sur des images et des nuages de points 3D. Les approches multimodales pour la détection d’objets en 3D exploitent différents capteurs tels que des caméras et des détecteurs de distance pour détecter les objets d’intérêt dans l’environnement. Nous avons exploité trois ensembles de données bien connus dans le domaine de la conduite autonome, à savoir KITTI, nuScenes et Waymo. Nous avons mené des expériences approfondies pour étudier la méthode proposée afin d’évaluer la robustesse du modèle et nous avons fourni des résultats quantitatifs et qualitatifs. Nous avons observé que la méthode que nous proposons peut mesurer efficacement la robustesse du modèle. / In this thesis, we study the robustness of a multimodal 3D object detection model in the context of autonomous vehicles. Self-driving cars need to accurately detect and localize pedestrians and other vehicles in their 3D surrounding environment to drive on the roads safely. Robustness is one of the most critical aspects of an algorithm in the self-driving car 3D perception problem. Therefore, in this work, we proposed a method to evaluate a 3D object detector’s robustness. To this end, we have trained a representative multimodal 3D object detector on three different datasets. Afterward, we evaluated the trained model on datasets that we have proposed and made to assess the robustness of the trained models in diverse weather and lighting conditions. Our method uses two different approaches for building the proposed datasets for evaluating the robustness. In one approach, we used artificially corrupted images, and in the other one, we used the real images captured in diverse weather and lighting conditions. To detect objects such as cars and pedestrians in the traffic scenes, the multimodal model relies on images and 3D point clouds. Multimodal approaches for 3D object detection exploit different sensors such as camera and range detectors for detecting the objects of interest in the surrounding environment. We leveraged three well-known datasets in the domain of autonomous driving consist of KITTI, nuScenes, and Waymo. We conducted extensive experiments to investigate the proposed method for evaluating the model’s robustness and provided quantitative and qualitative results. We observed that our proposed method can measure the robustness of the model effectively.
|
113 |
Toward knowledge-based automatic 3D spatial topological modeling from LiDAR point clouds for urban areasXing, Xufeng 13 December 2023 (has links)
Le traitement d'un très grand nombre de données LiDAR demeure très coûteux et nécessite des approches de modélisation 3D automatisée. De plus, les nuages de points incomplets causés par l'occlusion et la densité ainsi que les incertitudes liées au traitement des données LiDAR compliquent la création automatique de modèles 3D enrichis sémantiquement. Ce travail de recherche vise à développer de nouvelles solutions pour la création automatique de modèles géométriques 3D complets avec des étiquettes sémantiques à partir de nuages de points incomplets. Un cadre intégrant la connaissance des objets à la modélisation 3D est proposé pour améliorer la complétude des modèles géométriques 3D en utilisant un raisonnement qualitatif basé sur les informations sémantiques des objets et de leurs composants, leurs relations géométriques et spatiales. De plus, nous visons à tirer parti de la connaissance qualitative des objets en reconnaissance automatique des objets et à la création de modèles géométriques 3D complets à partir de nuages de points incomplets. Pour atteindre cet objectif, plusieurs solutions sont proposées pour la segmentation automatique, l'identification des relations topologiques entre les composants de l'objet, la reconnaissance des caractéristiques et la création de modèles géométriques 3D complets. (1) Des solutions d'apprentissage automatique ont été proposées pour la segmentation sémantique automatique et la segmentation de type CAO afin de segmenter des objets aux structures complexes. (2) Nous avons proposé un algorithme pour identifier efficacement les relations topologiques entre les composants d'objet extraits des nuages de points afin d'assembler un modèle de Représentation Frontière. (3) L'intégration des connaissances sur les objets et la reconnaissance des caractéristiques a été développée pour inférer automatiquement les étiquettes sémantiques des objets et de leurs composants. Afin de traiter les informations incertitudes, une solution de raisonnement automatique incertain, basée sur des règles représentant la connaissance, a été développée pour reconnaître les composants du bâtiment à partir d'informations incertaines extraites des nuages de points. (4) Une méthode heuristique pour la création de modèles géométriques 3D complets a été conçue en utilisant les connaissances relatives aux bâtiments, les informations géométriques et topologiques des composants du bâtiment et les informations sémantiques obtenues à partir de la reconnaissance des caractéristiques. Enfin, le cadre proposé pour améliorer la modélisation 3D automatique à partir de nuages de points de zones urbaines a été validé par une étude de cas visant à créer un modèle de bâtiment 3D complet. L'expérimentation démontre que l'intégration des connaissances dans les étapes de la modélisation 3D est efficace pour créer un modèle de construction complet à partir de nuages de points incomplets. / The processing of a very large set of LiDAR data is very costly and necessitates automatic 3D modeling approaches. In addition, incomplete point clouds caused by occlusion and uneven density and the uncertainties in the processing of LiDAR data make it difficult to automatic creation of semantically enriched 3D models. This research work aims at developing new solutions for the automatic creation of complete 3D geometric models with semantic labels from incomplete point clouds. A framework integrating knowledge about objects in urban scenes into 3D modeling is proposed for improving the completeness of 3D geometric models using qualitative reasoning based on semantic information of objects and their components, their geometric and spatial relations. Moreover, we aim at taking advantage of the qualitative knowledge of objects in automatic feature recognition and further in the creation of complete 3D geometric models from incomplete point clouds. To achieve this goal, several algorithms are proposed for automatic segmentation, the identification of the topological relations between object components, feature recognition and the creation of complete 3D geometric models. (1) Machine learning solutions have been proposed for automatic semantic segmentation and CAD-like segmentation to segment objects with complex structures. (2) We proposed an algorithm to efficiently identify topological relationships between object components extracted from point clouds to assemble a Boundary Representation model. (3) The integration of object knowledge and feature recognition has been developed to automatically obtain semantic labels of objects and their components. In order to deal with uncertain information, a rule-based automatic uncertain reasoning solution was developed to recognize building components from uncertain information extracted from point clouds. (4) A heuristic method for creating complete 3D geometric models was designed using building knowledge, geometric and topological relations of building components, and semantic information obtained from feature recognition. Finally, the proposed framework for improving automatic 3D modeling from point clouds of urban areas has been validated by a case study aimed at creating a complete 3D building model. Experiments demonstrate that the integration of knowledge into the steps of 3D modeling is effective in creating a complete building model from incomplete point clouds.
|
114 |
Examen des liens entre la qualité de la relation et la valeur accordée aux marques de reconnaissance reçues au travailDaoust, Julie January 2012 (has links)
Le monde du travail est en constante transformation et les entreprises doivent mettre des moyens en place pour demeurer compétitives. Parmi ceux-ci, on retrouve l'application de programmes de reconnaissance. De nombreuses recherches ont démontré l'efficacité de la reconnaissance à plusieurs niveaux pour l'organisation. La reconnaissance peut provenir de différentes sources, dont le supérieur immédiat qui joue un rôle prépondérant à cet égard. Celui-ci entretient une relation hiérarchique avec ses employés. Dans la documentation scientifique, la reconnaissance n'a pas été mise en lien avec la qualité de cette relation. Ainsi, l'objectif de la présente recherche est de déterminer dans quelle mesure la valeur accordée aux marques de reconnaissance reçues est influencée par la qualité de la relation entre celui qui émet les marques de reconnaissance et son destinataire. L'indicateur retenu pour mesurer la qualité de la relation est la confiance. Or, pour répondre à l'objectif de recherche, un questionnaire contenant un instrument portant sur la confiance puis un instrument sur les pratiques de reconnaissance a été distribué électroniquement à un échantillon composé de travailleurs d'organisations publiques, privées ou communautaires (N=203). Une analyse de régression simple a été conduite afin de vérifier le lien de prédiction entre la confiance et la valeur accordée aux marques de reconnaissance reçues. Un lien faible mais positif entre les deux variables est ressorti de cette analyse. Un deuxième objectif de la recherche était de déterminer lesquels des différents facteurs de la confiance avaient le plus d'influence sur la valeur accordée aux marques de reconnaissance reçues. Les postulats de l'analyse de régression multiple n'étant pas tous respectés, il n'a pas été possible de répondre à cet objectif.
|
115 |
Visuo-Haptic recognition of daily-life objects : a contribution to the data scarcity problem / Reconnaissance visio-haptique des objets de la vie quotidienne : à partir de peu de données d'entraînementAbderrahmane, Zineb 29 November 2018 (has links)
Il est important pour les robots de pouvoir reconnaître les objets rencontrés dans la vie quotidienne afin d’assurer leur autonomie. De nos jours, les robots sont équipés de capteurs sophistiqués permettant d’imiter le sens humain du toucher. C’est ce qui permet aux robots interagissant avec les objets de percevoir les propriétés (telles la texture, la rigidité et la matière) nécessaires pour leur reconnaissance. Dans cette thèse, notre but est d’exploiter les données haptiques issues de l’interaction robot-objet afin de reconnaître les objets de la vie quotidienne, et cela en utilisant les algorithmes d’apprentissage automatique. Le problème qui se pose est la difficulté de collecter suffisamment de données haptiques afin d’entraîner les algorithmes d’apprentissage supervisé sur tous les objets que le robot doit reconnaître. En effet, les objets de la vie quotidienne sont nombreux et l’interaction physique entre le robot et chaque objet pour la collection des données prend beaucoup de temps et d’efforts. Pour traiter ce problème, nous développons un système de reconnaissance haptique permettant de reconnaître des objets à partir d'aucune, de une seule, ou de plusieurs données d’entraînement. Enfin, nous intégrons la vision afin d’améliorer la reconnaissance d'objets lorsque le robot est équipé de caméras. / Recognizing surrounding objects is an important skill for the autonomy of robots performing in daily-life. Nowadays robots are equipped with sophisticated sensors imitating the human sense of touch. This allows the recognition of an object based on information ensuing from robot-object physical interaction. Such information can include the object texture, compliance and material. In this thesis, we exploit haptic data to perform haptic recognition of daily life objects using machine learning techniques. The main challenge faced in our work is the difficulty of collecting a fair amount of haptic training data for all daily-life objects. This is due to the continuously growing number of objects and to the effort and time needed by the robot to physically interact with each object for data collection. We solve this problem by developing a haptic recognition framework capable of performing Zero-shot, One-shot and Multi-shot Learning. We also extend our framework by integrating vision to enhance the robot’s recognition performance, whenever such sense is available.
|
116 |
Reconnaissance de catégories d'objets et d'instances d'objets à l'aide de représentations localesNowak, Eric 17 March 2008 (has links) (PDF)
La reconnaissance d'objets est l'un des domaines d'étude les plus actifs de la vision par ordinateur. Il faut distinguer la reconnaissance de catégories d'objets génériques (une voiture en général, un piéton en général) et la reconnaissance d'instances d'objets particuliers (la voiture de M. Dupont, M. Dupont lui-même). Cette thèse aborde les deux sujets. Nous utilisons pour cela des représentations d'objets par parties, ce qui signifie que l'image à analyser n'est pas considérée dans son ensemble de manière rigide, mais plutôt comme un ensemble de régions locales, ce qui apporte une grande robustesse à la reconnaissance. Nous nous intéressons spécifiquement à la reconnaissance d'objets décrits par sacs-demots. Cela signifie que les relations géométriques entre les régions locales décrivant une image sont ignorées. Nous étudions en particulier l'influence des différentes composantes de la classification d'images par sac-de-mots, et nous montrons que le facteur le plus influent est la quantité de régions locales sélectionnées, et pour cette raison nous proposons une sélection aléatoire et en grande quantité de régions locales dans les images à décrire. Dans le contexte de la thèse CIFRE effectuée en partenariat avec l'INRIA et Bertin Technologies, nous analysons la performance des méthodes sac-de-mots pour la reconnaissance des véhicules militaires en imagerie infra-rouge. Nous montrons que les paramètres algorithmiques se comportent comme en imagerie visible. Nous effectuons aussi une étude des paramètres opérationnels, telle que la distance cible-caméra, et montrons que les paramètres sensibles sont les occultations et la présence de fond texturé quand les cibles sont détourées avec une faible précision. Nous étudions aussi le compromis entre performance et temps de calcul, et proposons une méthode de sélection de primitives adaptées aux classifieurs hiérarchiquesmulti-classes, qui fournissent un meilleur compromis performance / temps de calcul que la selection de primitives pour classifieurs plats. Les trois études précédentes traitent de la reconnaissance de catégories d'objets. Nous nous intéressons aussi à la reconnaissance d'instances d'objets, et proposons une mesure de similarité destinée à des instances d'objets jamais vus lors d'une phase d'apprentissage. Cette mesure est basée sur la quantification par des arbres extrêmement aléatoires de paires de régions locales correspondantes sélectionnées dans les deux images à comparer. Toutes ces études sont validées par des expérimentations importantes sur des bases de données publiques, et nous obtenons à chaque fois des résultats aussi bons, sinon meilleurs, que ceux de l'état de l'art.
|
117 |
Détection de textes dans des images issues d'un flux vidéo pour l'indexation sémantiqueWolf, Christian Jolion, Jean-Michel January 2005 (has links)
Thèse doctorat : Informatique : Villeurbanne, INSA : 2003. / Thèse rédigée en anglais. Introduction et conclusion générale en français. En 2ème partie, choix d'articles en français avec résumés, mots-clef et réf. bibliogr. Titre provenant de l'écran-titre. Bibliogr. p. 147-154. Publications de l'auteur p. 155-157.
|
118 |
Combinaison d'approches neuronales et de connaissances linguistiques pour la reconnaissance de texte dans les documents multimédiasElagouni, Khaoula 28 May 2013 (has links) (PDF)
Les travaux de cette thèse portent sur la reconnaissance des indices textuels dans les images et les vidéos. Dans ce cadre, nous avons conçu des prototypes d'OCR (optical character recognition) capables de reconnaître tant des textes incrustés que des textes de scène acquis n'importe où au sein d'images ou de vidéos. Nous nous sommes intéressée à la définition d'approches robustes à la variabilité des textes et aux conditions d'acquisition. Plus précisément, nous avons proposé deux types de méthodes dédiées à la reconnaissance de texte : - une approche fondée sur une segmentation en caractères qui recherche des séparations non linéaires entre les caractères adaptées à la morphologie de ces derniers ; - deux approches se passant de la segmentation en intégrant un processus de scanning multi-échelles ; la première utilise un modèle de graphe pour reconnaître les textes tandis que la seconde intègre un modèle connexionniste récurrent spécifiquement développé pour gérer les contraintes spatiales entre les caractères.Outre les originalités de chacune des approches, deux contributions supplémentaires de ce travail résident dans la définition d'une reconnaissance de caractères fondée sur un modèle de classification neuronale et l'intégration de certaines connaissances linguistiques permettant de tirer profit du contexte lexical. Les différentes méthodes conçues ont été évaluées sur deux bases de documents : une base de textes incrustés dans des vidéos et une base publique de textes de scène. Les expérimentations ont permis de montrer la robustesse des approches et de comparer leurs performances à celles de l'état de l'art, mettant en évidence leurs avantages et leurs limites.
|
119 |
Organizational concepts for the sensor-to-shooter world the impact of real-time information on airpower targeting /Chapman, William G. January 1900 (has links)
Thesis--School of Advanced Air Power Studies, 1996. / Shipping list no.: 98-0921-M. "May 1997." Includes bibliographical references. Also available via Internet from the Air University Press web site. Address as of 10/9/03: http://aupress.au.af.mil/SAAS%5FTheses/Chapman/chapman.pdf; current access is available via PURL.
|
120 |
Étude et réalisation d'un extracteur rapide de caractéristiques d'image vidéo.Rakhodai, Issa, January 1900 (has links)
Th. doct.-ing.--Électronique, électrotechn., autom.--Toulouse--I.N.P., 1979. N°: 68.
|
Page generated in 0.0615 seconds