• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 974
  • 348
  • 116
  • 15
  • 10
  • 8
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1558
  • 759
  • 275
  • 260
  • 241
  • 235
  • 231
  • 170
  • 165
  • 155
  • 151
  • 150
  • 141
  • 132
  • 124
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

La reconnaissance de plan des adversaires

Bisson, Francis January 2012 (has links)
Ce mémoire propose une approche pour la reconnaissance de plan qui a été conçue pour les environnements avec des adversaires, c'est-à-dire des agents qui veulent empêcher que leurs plans soient reconnus. Bien qu'il existe d'autres algorithmes de reconnaissance de plan dans la littérature, peu sont adaptés pour de tels environnements. L'algorithme que nous avons conçu et implémenté (PROBE, Provocation for the Recognition of Opponent BEhaviours ) est aussi capable de choisir comment provoquer l'adversaire, en espérant que la réaction de ce dernier à la provocation permette de donner des indices quant à sa véritable intention. De plus, PROBE utilise des machines à états finis comme représentation des plans, un formalisme différent de celui utilisé par les autres approches et qui est selon nous mieux adapté pour nos domaines d'intérêt. Les résultats obtenus suite à différentes expérimentations indiquent que notre algorithme réussit généralement à obtenir une bonne estimation des intentions de l'adversaire dès le départ et que cette estimation s'améliore lorsque de nouvelles actions sont observées. Une comparaison avec un autre algorithme de reconnaissance de plan démontre aussi que PROBE est plus efficace en temps de calcul et en utilisation de la mémoire, sans pourtant sacrifier la qualité de la reconnaissance. Enfin, les résultats montrent que notre algorithme de provocation permet de réduire l'ambiguïté sur les intentions de l'adversaire et ainsi améliorer la justesse du processus de reconnaissance de plan en sélectionnant une provocation qui force l'adversaire, d'une certaine façon, à révéler son intention.
272

Une approche basée sur l'analyse des séquences pour la reconnaissance des activités et comportements dans les environnements intelligents

Chikhaoui, Belkacem January 2013 (has links)
Cette thèse vise à étudier deux problématiques différentes: 1) la reconnaissance des activités de la vie quotidienne des personnes dans un habitat intelligent, et 2) la construction du profil comportemental de la personne. Nos contributions sont présentées dans deux chapitres illustrant les solutions proposées. La première contribution de cette thèse est liée à l'introduction d'une nouvelle approche non supervisée de reconnaissance d'activités nommée ADR-SPLDA (Activity Discovery and Recognition using Sequential Patterns and Latent Dirichlet Allocation). Contrairement aux approches existantes, ADR-SPLDA permet la découverte et la reconnaissance des activités de façon non supervisée sans faire nécessairement recours à l'annotation des données. En outre, ADR-SPLDA est basée sur l'analyse de patrons fréquents, ce qui permet de réduire significativement la quantité du bruit dans les données. La fiabilité de ADR-SPLDA est illustrée à travers une série de tests et de comparaisons avec les approches existantes sur une variété de données réelles. Le deuxième travail vise la construction du profil comportemental de la personne en se basant sur ses activités. Nous avons développé une approche qui permet de découvrir les différents comportements dans les séquences, et d'extraire les relations causales entre les différents comportements. Notre contribution inclut l'introduction de l'analyse causale dans la construction du profil, ce qui nous a permis aussi de découvrir les relations causales entre les différentes activités. Une série de tests a été également effectuée pour illustrer la fiabilité de notre approche sur une variété de données. Le travail de recherche entrepris dans cette thèse constitue l'une des nombreuses étapes importantes dans l'accomplissement d'un système d'assistance efficace dans l'objectif d'assurer le bien-être des personnes.
273

Modèle possibiliste pour la reconnaissance d'activités habitat intelligent

Roy, Patrice C January 2012 (has links)
Le vieillissement actuel de la population provoque un accroissement de problèmes dans les systèmes de santé, dont une pénurie de personnel médical pour les soins à domicile. Le vieillissement de la population a également pour effet d'augmenter le nombre de personnes avec troubles cognitifs. Les comportements incohérents induits par les symptômes des troubles cognitifs limitent la capacité de ces personnes à réaliser leurs activités de la vie quotidienne (AVQ). L'un des axes de recherche prometteurs de cette problématique est l'amélioration et le maintien de la qualité de vie des personnes avec troubles cognitifs dans leurs domiciles. Pour répondre à cette problématique, plusieurs laboratoires de recherche, dont le laboratoire de DOmotique et d'informatique Mobile de l'Université de Sherbrooke (DOMUS), explorent les différents moyens de soutenir, à l'intérieur d'un habitat intelligent, un occupant avec troubles cognitifs dans l'accomplissement de ses AVQ. Cette approche s'inscrit dans le récent courant de pensée issu de l'intelligence ambiante, qui fait référence à une tendance où les environnements sont enrichis avec des technologies (capteurs, effecteurs et autres dispositifs interconnectés par un réseau), dans le but de concevoir un système pouvant planifier une assistance ponctuelle aux occupants en fonction des informations recueillies et de l'historique des données accumulées. L'une des difficultés majeures inhérentes à ce contexte est la reconnaissance et la prédiction des comportements anormaux lorsque les occupants effectuent leurs AVQ à l'intérieur d'un habitat intelligent. Cette thèse vise à contribuer à l'amélioration du processus de reconnaissance de comportements d'un occupant avec troubles cognitifs. Notre proposition consiste en une approche de reconnaissance et prédiction de comportements fondée sur une formalisation des actions basée sur la théorie des possibilités, une alternative à la théorie des probabilités. Les actions sont inférées à partir de l'état actuellement observé de l'habitat intelligent obtenu grâce aux évènements envoyés par les capteurs présents dans l'appartement, lesquelles peuvent fournir une information incomplète et imparfaite. À partir de la séquence d'actions observées plausibles, l'approche proposée utilise une formalisation des activités en structure de plans d'actions pour inférer le comportement observé de l'occupant. Cette approche est en mesure de considérer les comportements erronés, où l'occupant effectue de façon erronée certaines activités tandis que d'autres peuvent être effectuées de façon cohérente, et les comportements cohérents, où l'occupant effectue une ou plusieurs activités de façon cohérente. Les hypothèses sur le comportement observé sont ensuite utilisées pour déterminer les opportunités d'assistance que l'habitat intelligent peut offrir. L'approche proposée a été implémentée et validée au sein de l'infrastructure du projet"Ambient Intelligence for Home-based Elderly Care" à l'"Institute for Infocomm Research" de Singapour et présente des résultats prometteurs pour des scénarios de cas réels effectués dans l'infrastructure. Le développement d'un habitat intelligent capable de maintenir et d'améliorer la qualité de vie des personnes avec troubles cognitifs permettrait de diminuer le fardeau des aidants naturels et professionnels, facilitant le choix des ces personnes de rester à domicile. Ce type de technologie pourrait constituer une solution viable aux problèmes des systèmes de santé associés au vieillissement de la population. De plus, ce type d'approche peut également être utilisé dans des contextes où les comportements anormaux et les situations à risque doivent être évités comme, par exemple, dans le domaine de l'aviation.
274

Reconnaissance de locuteurs pour robot mobile

Grondin, François January 2012 (has links)
L'audition artificielle est de plus en plus utilisée en robotique mobile pour améliorer l'interaction humain-robot. La reconnaissance de la parole occupe présentement une place importante tandis qu'un intérêt particulier se développe pour la reconnaissance de locuteurs. Le système ManyEars permet actuellement à un robot mobile de localiser, suivre et séparer plusieurs sources sonores. Ce système utilise un ensemble de huit microphones qui sont disposés en cube. Ce mémoire porte sur la conception et l'évaluation d'un système de reconnaissance de locuteurs, baptisé WISS (Who IS Speaking), couplé au système ManyEars. Le système de reconnaissance de locuteurs conçu est robuste au bruit ambiant et au changement d'environnement. Une technique de combinaison de modèle parallèle (parallel model combination (PMC)) et des masques sont utilisés pour améliorer le taux d'identification dans un milieu bruité. Un indice de confiance est également introduit pour pondérer les identifications obtenues. La simplicité du système proposé fait en sorte qu'il est possible d'exécuter en temps réel l'algorithme sur un processeur généraliste ( General Purpose Processor (GPP)). Les performances du système sont établies à l'aide de plusieurs scénarios. Dans un premier lieu, des enregistrements sont diffusés dans des haut-parleurs pour un ensemble de vingt locuteurs. Le système est ainsi caractérisé en fonction des positions angulaires et radiales des sources sonores. Le taux de reconnaissance est affecté par la qualité du signal (i.e. diminution du rapport signal sur bruit ( Signal-to-Noise Ratio (SNR))) : il passe de 95.6% à 84.3% en moyenne lorsque le SNR passe d'environ 16 dB à 2 dB lorsque le locuteur se situe à 1.5 mètres des microphones. Par la suite, un scénario dit statique est vérifié à l'aide de quatre locuteurs qui récitent chacun leur tour des phrases à un volume de voix naturel. Finalement, un scénario dynamique dans lequel un groupe de quatre locuteurs ont une conversation naturelle avec des chevauchements entre les segments de paroles est étudié. Le taux de reconnaissance varie entre 74.2% et 100.0% (avec une moyenne de 90.6%) avec le scénario statique, et entre 42.6% et 100.0% avec le scénario dynamique (avec des moyennes de 58.3%, 72.8% et 81.4% pour des segments de 1, 2 et 3 secondes respectivement). Des solutions sont identifiées afin d'améliorer les performances lors de travaux futurs. Au meilleur de notre connaissance, il n'existe aucun système qui effectue une reconnaissance de locuteurs dans un environnement contaminé simultanément par des bruits convolutif et additif. De plus, l'utilisation de masques pour estimer ces bruits est un nouveau concept. Ces masques sont d'ailleurs généralement employés pour la reconnaissance de la parole et leur utilisation dans un contexte de reconnaissance de locuteur est une première. De plus, une caractérisation complète du système qui inclue les SNRs est proposée en fonction de la position du locuteur, ce qui est rarement disponible dans la littérature en audition artificielle pour les robots.
275

Traitement bio-inspiré de la parole pour système de reconnaissance vocale

Loiselle, Stéphane January 2010 (has links)
Cette thèse présente un traitement inspiré du fonctionnement du système auditif pour améliorer la reconnaissance vocale. Pour y parvenir, le signal de la parole est filtré par un banc de filtres et compressé pour en produire une représentation auditive. L'innovation de l'approche proposée se situe dans l'extraction des éléments acoustiques (formants, transitions et onsets ) à partir de la représentation obtenue. En effet, une combinaison de détecteurs composés de neurones à décharges permet de révéler la présence de ces éléments et génère ainsi une séquence d'événements pour caractériser le contenu du signal. Dans le but d'évaluer la performance du traitement présenté, la séquence d'événements est adaptée à un système de reconnaissance vocale conventionnel, pour une tâche de reconnaissance de chiffres isolés prononcés en anglais. Pour ces tests, la séquence d'événements agit alors comme une sélection de trames automatique pour la génération des observations (coefficients cepstraux). En comparant les résultats de la reconnaissance du prototype et du système de reconnaissance original, on remarque que les deux systèmes reconnaissent très bien les chiffres prononcés dans des conditions optimales et que le système original est légèrement plus performant. Par contre, la différence observée au niveau des taux de reconnaissance diminue lorsqu'une réverbération vient affecter les données à reconnaître et les performances de l'approche proposée parviennent à dépasser celles du système de référence. De plus, la sélection de trames automatique offre de meilleures performances dans des conditions bruitées. Enfin, l'approche proposée se base sur des caractéristiques dans le temps en fonction de la nature du signal, permet une sélection plus intelligente des données qui se traduit en une parcimonie temporelle, présente un potentiel fort intéressant pour la reconnaissance vocale sous conditions adverses et utilise une détection des caractéristiques qui peut être utilisée comme séquence d'impulsions compatible avec les réseaux de neurones à décharges.
276

Léon Bloy, l'invention de l'écrivain catholique moderne (1884-1903)

Fortier, Michaël January 2015 (has links)
Entre la fin du XIXe siècle et la Deuxième Guerre mondiale, le monde des lettres françaises est marqué par de nombreuses vagues de conversions qui attestent de la surprenante vitalité du catholicisme à l’âge de la sécularisation des sociétés. Plusieurs de ces écrivains catholiques nous sont bien connus aujourd’hui : Huysmans, Claudel, Péguy, Bernanos, Mauriac. Le présent mémoire est une enquête sur les origines de ce renouveau. À partir du cas du pamphlétaire, romancier, essayiste et diariste Léon Bloy, nous tentons de cerner les enjeux de l’émergence d’une position d’« écrivain catholique moderne » dans un champ littéraire symboliquement dominé par les principes de l’art pour l’art et les valeurs de l’esthétique pure. Comment concilier le programme de la modernité littéraire avec les exigences du catholicisme ? Par quel(s) moyen(s) sortir de l’esthétique pour privilégier une lecture spirituelle des œuvres, quand elles sont produites dans un champ surtout préoccupé d’art pur ? Comment déjouer les préjugés d’un milieu valorisant l’indépendance de l’artiste en investissant une image d’auteur catholique soucieux de son orthodoxie ? Telles sont quelques-unes des questions que nous abordons ici selon trois axes : socio-institutionnel, médiatique et théorique. Nous étudions d’abord la trajectoire de Léon Bloy, qui lutte avec un appareil institutionnel structuré par les valeurs de l’esthétique pure pour faire reconnaître sa position dans sa spécificité originale. Puis, comme une position nouvelle doit aussi se donner à voir comme telle, nous nous intéressons aux stratégies de visibilité mises en place par Bloy afin d’introduire dans l’imaginaire médiatique une figure d’écrivain catholique moderne. Enfin, nous abordons la réflexion théorique de l’écrivain pour assister à l’émergence d’une conception de la littérature catholique de la modernité construite à la lumière d’un double refus : refus de la littérature catholique telle qu’elle en vient à s’imaginer à l’époque, refus de l’art pur sous toutes ses formes. Notre étude entend restituer la figure de l’écrivain catholique moderne dans le contexte de sa difficile émergence. Nous verrons que, loin d’aller de soi, elle est le fruit de nombreuses luttes contre les principales orientations du champ littéraire fin de siècle et même contre l’Église qui cherche à exercer un contrôle sur la production intellectuelle de l’époque.
277

Attribution d'intentions, intelligence émotionnelle et schizophrénie

Lefebvre, Mylène January 2008 (has links)
La schizophrénie est une pathologie dont les répercussions pour la personne qui en souffre sont importantes. De façon très fréquente, la schizophrénie entraîne un fonctionnement social pauvre et perturbé. Pour expliquer à tout le moins en partie ce dysfonctionnement, plusieurs études appuient l'hypothèse d'un déficit au niveau de l'attribution d'états mentaux à autrui (intentions, croyances, désirs, etc.). Parallèlement, d'autres études ont corroboré l'hypothèse d'une altération au niveau de la reconnaissance d'expressions faciales et d'émotions. Toutefois, très peu d'études ont vérifié conjointement ces deux hypothèses de façon à observer si un lien existe entre ces deux déficits. Cette étude propose d'examiner l'hypothèse d'un lien entre la capacité à attribuer des intentions aux autres et deux des composantes de l'intelligence émotionnelle: la perception et la compréhension des émotions chez autrui. Les résultats démontrent l'existence d'un lien significatif positif entre la capacité à attribuer des intentions et la compréhension des émotions chez les schizophrènes, contrairement au groupe contrôle étant composé de personnes souffrant de dépression majeure. Toutefois, contrairement à ce qui avait été prédit, le lien entre l'attribution d'intentions et la perception des émotions n'est pas apparu significatif.
278

Modèles de Markov cachés à haute précision dynamique

Gagnon, Sébastien January 2016 (has links)
La reconnaissance vocale est une technologie sujette à amélioration. Malgré 40 ans de travaux, de nombreuses applications restent néanmoins hors de portée en raison d'une trop faible efficacité. De façon à pallier à ce problème, l'auteur propose une amélioration au cadre conceptuel classique. Plus précisément, une nouvelle méthode d'entraînement des modèles markoviens cachés est exposée de manière à augmenter la précision dynamique des classificateurs. Le présent document décrit en détail le résultat de trois ans de recherche et les contributions scientifiques qui en sont le produit. L'aboutissement final de cet effort est la production d'un article de journal proposant une nouvelle tentative d'approche à la communauté scientifique internationale. Dans cet article, les auteurs proposent que des topologies finement adaptées de modèles markoviens cachés (HMMs) soient essentielles à une modélisation temporelle de haute précision. Un cadre conceptuel pour l'apprentissage efficace de topologies par élagage de modèles génériques complexes est donc soumis. Des modèles HMM à topologie gauche-à-droite sont d'abord entraînés de façon classique. Des modèles complexes à topologie générique sont ensuite obtenus par écrasement des modèles gauche-à-droite. Finalement, un enchaînement successif d'élagages et d'entraînements Baum-Welch est fait de manière à augmenter la précision temporelle des modèles.
279

Quelques contributions en reconnaissance automatique de la parole robuste

Cerisara, Christophe 31 March 2010 (has links) (PDF)
La reconnaissance automatique de la parole est un domaine de recherche très actif depuis de nombreuses années. Bien que les performances des systèmes de transcription automatique aient considérablement progressé depuis tout ce temps, les erreurs commises par ces systèmes ne sont toujours pas acceptables du point de vue des utilisateurs, probablement du fait du référentiel humain qui reste largement inégalé, en particulier en ce qui concerne la robustesse des transcriptions aux conditions d'utilisation dégradées. J'étudie dans ce mémoire l'état de l'art du domaine pour la période allant de 1995 à 2010, en me concentrant sur les aspects liés à la robustesse des modèles acoustiques avec un seul microphone. J'y décris également mes principales contributions, en les classant selon les différents étages composant un système de reconnaissance automatique: paramétrisation, modèle acoustique et algorithme de décodage. Dans le domaine de la paramétrisation, mes deux contributions principales concernent une étude du domaine de l'analyse computationnelle de scènes auditives, ainsi qu'une nouvelle approche de débruitage de la parole s'appuyant sur une modélisation bayésienne des espaces bruités et non-bruités et de leur inter-dépendances. Mes travaux sur les modèles acoustiques ont débuté pendant ma thèse de doctorat, qui concernait l'étude des modèles multi-bandes, dans lesquels le spectre du signal de parole est décomposé en bandes de fréquences indépendantes. Dans ce cadre, j'ai notamment proposé un algorithme d'apprentissage discriminant global et la conception de nouvelles unités phonétiques adaptées à l'information phonétique présente dans les bandes. Une autre contribution importante est l'amélioration de l'adaptation jacobienne, qui est une approximation linéaire de la méthode PMC (Parallel Model Combination) dans le domaine cepstral. J'ai notamment proposé une approche permettant de choisir le compromis précision / complexité souhaité, et étendu l'approche au bruit convolutif. Une partie conséquente de mes travaux a ensuite concerné la reconnaissance avec données manquantes, qui, par ses aspects de marginalisation, peut être interprétée comme une modification de l'algorithme de reconnaissance. Cette modification exploite une nouvelle source d'information concernant la localisation spectro-temporelle du bruit afin de concentrer le décodage sur les observations acoustiques les moins corrompues. J'ai ainsi travaillé sur l'adaptation de cette approche au domaine cepstral, notamment en proposant un nouveau formalisme de calcul des masques minimisant directement le taux d'erreur de reconnaissance. Une autre contribution concerne le développement de modèles bayésiens originaux qui discrétisent l'espace de recherche pour estimer les masques, ou encore d'une nouvelle méthode minimisant la largeur de l'intervalle de marginalisation. Cette première partie du mémoire est guidée par une analyse des progrès réalisés en fonction d'un critère, celui de l'information prise en compte par les différentes méthodes proposées. Ce critère est en effet très important, car il a une grande influence sur les évaluations expérimentales et sur les capacités de généralisation des approches. De plus, alors que d'innombrables modèles théoriques d'apprentissage ont été proposés et testés depuis vingt ans, toutes ces approches exploitent quasiment exclusivement l'information acoustique et lexicale. Je soupçonne les limites des paradigmes actuels d'être en bien plus grande partie dus au déficit d'information et de connaissance qu'aux capacités des modèles eux-mêmes. J'ai donc commencé à m'intéresser depuis 2004 aux autres sources d'information qui pourraient servir en reconnaissance de la parole, notamment au contexte et plus particulièrement aux connaissances syntaxiques et sémantiques. Ce mémoire développe ces aspects essentiellement dans une deuxième partie consacrée à la reconnaissance des actes de dialogue, à la segmentation en phrases, à la sémantique lexicale par le biais de la détection automatique du thème, et enfin à l'analyse syntaxique des transcriptions automatiques de l'oral. Mon ambition est tout d'abord d'étudier et d'adapter les approches en linguistique computationnelle permettant d'extraire ces indices du flux de parole afin de prendre en compte les spécificités des transcriptions automatiques, puis d'exploiter en retour ces nouvelles informations afin d'améliorer le système de transcription automatique.
280

Reconnaissance d'Expressions Faciale 3D Basée sur l'Analyse de Forme et l'Apprentissage Automatique

Maalej, Ahmed 23 May 2012 (has links) (PDF)
La reconnaissance des expressions faciales est une tâche difficile, qui a reçu un intérêt croissant au sein de la communauté des chercheurs, et qui impacte les applications dans des domaines liés à l'interaction homme-machine (IHM). Dans le but de construire des systèmes IHM approchant le comportement humain et emotionnellement intelligents, les scientifiques essaient d'introduire la composante émotionnelle dans ce type de systèmes. Le développement récent des capteurs d'acquisition 3D a fait que les données 3D deviennent de plus en plus disponibles, et ce type de données vient pour remédier à des problèmes inhérents aux données 2D tels que les variations d'éclairage, de pose et d'échelle et de faible résolution. Plusieurs bases de données 3D du visage sont publiquement disponibles pour les chercheurs dans le domaine de la reconnaissance d'expression faciale leur permettant ainsi de valider et d'évaluer leurs approches. Cette thèse traite le problème la reconnaissance d'expressions faciale et propose une approche basée sur l'analyse de forme pour la reconnaissance d'expressions dans des cadres de données 3D statiques et 3D dynamiques. Tout d'abord, une représentation du modèle 3D du visage basée sur les courbes est proposée pour décrire les traits du visage. Puis, utilisant ces courbes, l'information de forme qui leur est liée est quantifiée en utilisant un cadre de travail basé sur la géométrie Riemannienne. Nous obtenons ainsi des scores de similarité entre les différentes formes locales du visage. Nous constituons, alors, l'ensemble des descripteurs d'expressions associées à chaque surface faciale. Enfin, ces descripteurs sont utilisés pour la classification l'expressions moyennant des algorithmes d'apprentissage automatique. Des expérimentations exhaustives sont alors entreprises pour valider notre approche. Des résultats de taux de reconnaissance d'expressions de l'ordre de 98.81% pour l'approche 3D statique, et de l'ordre de 93.83% pour l'approche 3D dynamique sont alors atteints, et sont comparés par rapport aux résultats des travaux de l'état de l'art.

Page generated in 0.0846 seconds