• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 121
  • 22
  • 9
  • 8
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 372
  • 121
  • 72
  • 62
  • 59
  • 54
  • 50
  • 41
  • 37
  • 35
  • 32
  • 31
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Effect of angiotensin II, norepinephrine and the ace inhibitor, perindoprilat on the arrhythmogenic transient inward current of single isolated guinea pig and rabbit ventricular myocytes

Enous, Ridwaan 25 July 2017 (has links)
No description available.
252

Spinal Cord Activation Differentially Modulates Ischaemic Electrical Responses to Different Stressors in Canine Ventricles

Cardinal, René, Ardell, Jeffrey L., Linderoth, Bengt, Vermeulen, Michel, Foreman, Robert D., Armour, J. Andrew 31 March 2004 (has links)
Spinal cord stimulation (SCS) represents an acceptable treatment modality for patients with chronic angina pectoris refractory to standard therapy, but its mechanism of action remains unclear. To develop an experimental paradigm to study this issue, ameroid (AM) constrictors were implanted around the left circumflex coronary artery (LCx) in canines. Six weeks later, unipolar electrograms were recorded from 191 sites in the LCx territory in the open-chest, anesthetized state under basal pacing at 150 beats/min. We investigated the effect of SCS on ST segment displacements induced in the collateral-dependent myocardium in response to two stressors: (i) transient bouts of rapid ventricular pacing (TRP: 240/min for 1 min) and (ii) angiotensin II administered to right atrial neurons via their coronary artery blood supply. ST segment responses to TRP consisted of ST segment elevation in central areas of the LCx territory and ST depression at more peripheral areas. Such responses were unchanged when TRP was applied under SCS. Shortening of repolarization intervals in the metabolically compromised myocardium in response to TRP was also unaffected by SCS. In contrast, ST segment responses to intracoronary angiotensin II, which consisted of increased ST elevation, were attenuated by SCS in 6/8 preparations. The modulator effects of SCS were greatest at sites at which the greatest responses to angiotensin II occurred in the absence of SCS. These data indicate that spinal cord stimulation may attenuate the deleterious effects that stressors exert on the myocardium with reduced coronary reserve, particularly stressors associated with chemical activation of the intrinsic cardiac nervous system.
253

Intracellular Angiotensin II Elicits CA<sup>2+</sup> Increases in A7r5 Vascular Smooth Muscle Cells

Filipeanu, Catalin M., Brailoiu, Eugen, Kok, Jan Willem, Henning, Robert H., De Zeeuw, Dick, Nelemans, S. Adriaan 18 June 2001 (has links)
Recent studies show that angiotensin II can act within the cell, possibly via intracellular receptors pharmacologically different from typical plasma membrane angiotensin II receptors. The signal transduction of intracellular angiotensin II is unclear. Therefore, we investigated the effects of intracellular angiotensin II in cells devoid of physiological responses to extracellular angiotensin II (A7r5 vascular smooth muscle cells). Intracellular delivery of angiotensin II was obtained by using liposomes or cell permeabilisation. Intracellular angiotensin II stimulated Ca2+ influx, as measured by 45Ca2+ uptake and single-cell fluorimetry. This effect was insensitive to extracellular or intracellular addition of losartan (angiotensin AT1 receptor antagonist) or PD123319 ((s)-1-(4-[dimethylamino]-3-methylphenyl)methyl-5-(diphenylacetyl)-4,5,6,7- tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylate) (angiotensin AT2 receptor antagonist). Intracellular angiotensin II stimulated inositol-1,4,5-trisphosphate (Ins(1,4,5,)P3) production and increased the size of the Ins(1,4,5,)P3 releasable 45Ca2+ pool in permeabilised cells, independent of losartan and PD123319. Small G-proteins did not participate in this process, as assessed by using GDPβS. Intracellular delivery of angiotensin I was unable to elicit any of the effects elicited by intracellular angiotensin II. We conclude from our intracellular angiotensin application experiments that angiotensin II modulates Ca2+ homeostasis even in the absence of extracellular actions. Pharmacological properties suggest the involvement of putative angiotensin non-AT1-/non-AT2 receptors.
254

Characterization of the Second Messenger Signaling Cascade Linking Angiotensin II Receptor Activation with Vascular Smooth Muscle Cell Mitogenesis

Wildroudt, Maria L. 28 July 2005 (has links)
No description available.
255

ANGIOTENSIN AT1 RECEPTOR BLOCKADE PROTECTS THE BRAIN FROM ISCHEMIC DAMAGE

Penchikala, Madhuri 20 August 2007 (has links)
No description available.
256

A pathologic role for angiotensin II and endothelin-1 in cardiac remodelling and ischaemia and reperfusion injury in a rat model of the metabolic syndrome

Smith, Wayne 03 1900 (has links)
Thesis (MScMedSc (Biomedical Sciences. Medical Physiology))--University of Stellenbosch, 2006. / Introduction: Obesity, which is implicated in the development of the metabolic syndrome (MS) is reaching epidemic proportions worldwide. MS significantly increases the risk of developing cardiovascular disease, which includes coronary artery disease. The current absence of animal models of diet induced obesity and the MS makes the investigation of the cardiovascular consequences of MS virtually impossible. As a result the effects of the MS on cardiac function, morphology and susceptibility to ischaemia are not well understood. Aims: We set out to: 1) develop and characterize a rodent model of dietinduced obesity and the MS, 2) investigate the susceptibility of hearts from these animals to ischaemia/reperfusion induced injury and, 3) determine whether angiotensin II (Ang II) and endothelin-1 (ET-1) plays a role in cardiac remodelling and/or the severity of ischaemia and reperfusion injury in this model. Methods: Male Wistar rats were fed a standard rat chow diet or cafeteria diet (CD) for 16 weeks. After the feeding period rats were sacrificed and blood and myocardial tissue samples were collected to document biochemical changes in these animals. Hearts were perfused on the isolated working rat heart perfusion apparatus to assess myocardial mechanical function before and after ischaemia. In a separate series of experiments, hearts underwent coronary artery ligation to determine the incidence and duration of ventricular arrhythmias during ischaemia and reperfusion, using electrocardiography. To assess a possible link between myocardial remodelling and ischaemia/reperfusion injury and myocardial Ang II and ET-1 content, we also measured these peptides under basal conditions and during ischaemia. Two-dimensional targeted Mmode echocardiography was used to assess in vivo myocardial mechanical function in control and obese rats. Results: After 16 weeks on the CD, obese rats satisfied the World Health Organization (WHO) criteria for the MS by having visceral obesity, insulin resistance, dyslipidaemia and an elevated systolic blood pressure, compared to control rats. Circulating Ang II levels, but not ET-1 levels, were elevated in CD fed rats. Obese rats had cardiac hypertrophy and ex vivo basal myocardial mechanical function was depressed in the CD fed rat hearts compared to control rat hearts. CD fed rat hearts had poorer aortic output (AO) recoveries compared to hearts from control rats. These hearts also had a higher incidence and duration of reperfusion arrhythmias. No such functional differences were seen in the in vivo experiments. No differences in basal or ischaemic myocardial Ang II and ET-1 levels were seen in either group. Conclusion: We have developed and characterized a model of diet-induced obesity and the MS. Obesity is associated with cardiac hypertrophy and an increased myocardial susceptibility to ischaemia and reperfusion injury in our model. The hearts from obese rats were also more prone to reperfusion ventricular arrhythmias. As myocardial function was only poorer in the ex vivo obese animal experiments, our data suggests that the obesity associated changes in function observed in the ex vivo studies may be related to the absence of circulating substrates or factors, which are essential for their normal mechanical function.
257

The impact of activation of the renin-angiotensin system in the development of insulin resistance in experimental models of obesity

Perel, Shireen J. C. 03 1900 (has links)
Thesis (MScMedSc (Biomedical Sciences. Medical Physiology))--University of Stellenbosch, 2009. / Insulin stimulates the production of nitric oxide (NO) in endothelial cells and cardiac myocytes by a signalling pathway that involves the insulin receptor substrate (IRS)-1, phosphatidylinositol-3-kinase and protein kinase B (PKB/Akt). Physiological concentrations of NO play an important part in maintaining normal vascular function. It has been suggested that nitric oxide synthase (NOS) activity and NO production are chronically impaired in diabetes mellitus by an unknown mechanism. The reninangiotensin system and subsequent production of angiotensin II (Ang II) are elevated in obesity and diabetes while antagonism of the AT1 receptor with Losartan has beneficial effects in patients with insulin resistance and type II diabetes. Aims: We therefore aimed to investigate (i) the effect of Ang II on myocardial insulin signalling with regards to key proteins (IRS-1, PKB/Akt, eNOS and p38 MAPK) in correlation with NO production, (ii) the effect of Losartan on these parameters. Methods: Hyperphagia-induced obese, insulin resistant rats (DIO=diet supplemented with sucrose and condensed milk) were compared to age-matched controls. Half the animals were treated with 10mg/kg Losartan per day for 1 week. Isolated hearts were perfused with or without 0.03 μIU/mL insulin for 15 min. Blood glucose, bodyweight, intraperitoneal fat and plasma insulin and Ang II were recorded. Proteins of interest and their phosphorylation were determined by Western blotting. NO production was flow cytometrically analyzed. ANOVA followed by the Bonferroni correction was used with a p< 0.05 considered significant. Results: DIO animals had significant elevated bodyweight, blood glucose, plasma insulin and Ang II levels. Our data showed that the hearts from the DIO animals are insulin resistant, ultimately reflected by the attenuated activation of the key proteins (IRS-1, PKB/Akt and eNOS) involved in insulin signalling as well as NO production. AT1 receptor antagonism improved NO production in isolated adult ventricular myocytes from DIO animals while concurrently enhancing expression of eNOS, PKB/Akt and p38 MAPK. In contrast, NO production as well as expression of eNOS and PKB/Akt was attenuated in control animals after Losartan treatment. Conclusion: These results suggested that Ang II via AT1 or AT2 receptors, modulates protein expression of both PKB/Akt and eNOS. This encouraged us to investigate the involvement of AT2 receptors in the observed changes. To investigate this we needed to establish a culture of neonatal rat cardiac myocytes treated with raised fatty acids and Ang II. If similar changes were induced as observed in the hearts of DIO animals, the involvement of the AT1 and AT2 receptors could be investigated using specific antagonists against these receptors. Primary cultured ventricular myocytes were isolated from 1-3 day old Wistar rat pups. They were cultured for 48 hours before the addition of palmitate and oleate at a concentration of 0.25 mM each and were treated with or without the fatty acids for a period of 4 days. After 18 hours of serum starvation, cells were stimulated with or without 10 nM insulin for 15 minutes. The effect of fatty acid treatment on cell viability and glucose uptake were assessed by trypan blue and propidium iodide staining and 2-deoxy-D-3[H] glucose uptake respectively. Protein levels and phosphorylation of key proteins (PKB/Akt, PTEN and p38 MAPK) in insulin signalling was determined by Western blotting. 0.25 mM Fatty acids did not result in the loss of cell viability. Contrary to expectation, fatty acid treatment led to enhanced basal glucose uptake but lower Glut 1 protein expression. Basal protein expression of PPARα was, however, upregulated as was the expression of the phosphatase, PTEN. The latter could explain the lower PKB/Akt phosphorylation also documented. From these results we conclude that neonatal cardiac myocytes, cultured in the presence of elevated fatty acids, did not respond in a similar manner as the intact hearts of our animals and further modifications of the system might be needed before it can be utilized as initially planned.
258

Kidney Hyaluronan : Regulatory Aspects During Different States of Body Hydration, Nephrogenesis & Diabetes

Rügheimer, Louise January 2008 (has links)
<p>The kidney regulates the excretion of water and electrolytes, which maintains homeostasis and enables control of arterial blood pressure. Hyaluronan, a large negatively charged interstitial glucosaminoglycan, is heterogeneously distributed within the kidney, primarily found in the medulla.</p><p>Medullary hyaluronan content changes depending on the state of body hydration and plays a part in fluid regulation through its water binding and viscoelastic properties. </p><p>The aim of this thesis was to provide new insight into the regulation of intrarenal hyaluronan during different states of body hydration, during completion of kidney development, and during diabetes mellitus.</p><p>Dehydration reduces medullary interstitial hyaluronan in parallel with reduced hyaluronan synthase 2 gene expression and increased urinary hyaluronidase activity. Acute hydration results in an increase in medullary hyaluronan, an increase that requires nitric oxide and prostaglandins. Urinary hyaluronidase activity decreases during hydration. The elevation of hyaluronan is important for reducing water permeability of the interstitium i.e. favoring diuresis.</p><p>Changes in hyaluronan concentration constitute a morphoregulatory pathway that plays a key role in nephrogenesis. The reduction in neonatal hyaluronan depended on an angiotensin II mediated process that does not appear dependent on lymph vessel formation. If angiotensin II is blocked with an ACE inhibitor, hyaluronan accumulates, which results in structural and functional abnormalities in the kidney. </p><p>Renomedullary hyaluronan is elevated during uncontrolled diabetes, which coincides with induction of hyaluronan synthase 2 mRNA, hyperglycemia, glucosuria, proteinuria and overt diuresis. The levels of hyaluronan are probably at a <i>terminus ad quem</i> as no further response was seen during hydration. The higher interstitial expression of hyaluronan during diabetes may be involved in the progression of diabetic nephropathy.</p><p>This thesis in physiology provides new mechanistic insights into the regulation of renal hyaluronan during various aspects of fluid handling.</p>
259

Single Nucleotide Polymorphisms Linked to Essential Hypertension in Kasigau, Kenya

Freeman, Julia Carol 01 December 2013 (has links)
Hypertension, or high blood pressure (BP), is an ever-growing epidemic in the developing world. Understanding the genetics behind essential hypertension (EH), or hypertension with no known cause, is especially important. In this study, three single nucleotide polymorphisms (SNPs) known to be linked to an increase in susceptibility to EH were quantified from a cohort of Kenyans living in the Kasigau region. The SNPs are located in three genes that are part of the renin angiotensin system, the primary regulatory pathway in humans controlling BP. They include: AGT (rs699), AGTR1 (rs5186), and HSD11β2 (rs5479). Overall, by using a fluorescent-based RT-PCR technique, the genotype distribution of AGT (rs699) was 0.63 C/C, 0.34 C/T, and 0.03 T/T. When evaluated as normotensive, prehypertensive, Stage I, or Stage II categories the allele frequencies for f(C)= 0.77,0.85,0.81, 0.77, respectively, and demonstrated Hardy Weinberg Equilibrium (HWE) as assessed by Χ2, p < 0.05. The genotype distribution of AGTR1 (rs5186) was 0.96 A/A, 0.03 A/C, and 0.00 C/C and the genotype distribution of HSD11β2 (rs5479) was 0.46 A/A, 0.46 A/C, and 0.08 C/C. The majority of genotype frequencies for each SNP were in HWE, with the exception of the AGT (rs699) SNP found in the sublocation of Bughuta suggesting other evolutionary selective pressures may be at work in this subpopulation. The high prevalence of the susceptible C allele for AGT (rs699) likely implies it is a critical factor in the high prevalence of EH observed in this population.
260

Étude des déterminants structuraux de l'activation des voies de signalisation de la protéine G[indice inférieur q/11] et des β-arrestines par le récepteur de type 1 à l'angiotensine II / Study of the structural determinants involved in the activation of the G[subscript q/11] pathway and the β-arrestin pathway by the angiotensin-II type 1 receptor

Cabana, Jérôme January 2015 (has links)
Résumé : La signalisation biaisée représente la capacité des récepteurs couplés aux protéines G (RCPG) d'engager des voies de signalisation distinctes avec des efficacités variables selon le ligand utilisé ou la mutation dans le récepteur. Un meilleur contrôle des voies activées ou inhibées par des médicaments pourrait permettre de réduire leurs effets indésirables. Malheureusement, les mécanismes structuraux impliqués dans la transmission du signal à travers la membrane plasmique par l'entremise des RCPG sont peu connus, ce qui limite le développement rationnel de nouvelles molécules ciblant des voies de signalisation particulières. Le récepteur de type 1 à l'angiotensine II (AT[indice inférieur 1]), un RCPG de classe A prototypique, peut activer différents effecteurs suite à sa stimulation par le ligand endogène angiotensine II (AngII), incluant la protéine G[indice inférieur q/11] et les β-arrestines. Il est suggéré que l'activation de ces deux voies de signalisation peut être associée à des conformations différentes du récepteur AT[indice inférieur 1]. Pour vérifier cette hypothèse, nous avons utilisé des simulations de dynamique moléculaire afin d'explorer les interactions et les mouvements qui définissent le paysage conformationnel du récepteur AT[indice inférieur 1]. De plus, nous avons vérifié comment était modifié le paysage conformationnel par des mutations (N111G, N111W et D74N) et des ligands (AngII et [Sar[indice supérieur 1], Ile[indice supérieur 8]]AngII) ayant des profils signalétiques différents pour la voie de la protéine G[indice inférieur q/11] et la voie des β-arrestines. Les résultats obtenus nous éclairent sur le rôle d'un réseau de ponts hydrogène entre des résidus polaires conservés au coeur du récepteur dont font partie les résidus N111[indice supérieur 3.35] et D74[indice supérieur 2.50]. Les résultats révèlent la présence d'un groupe de résidus hydrophobes juste au-dessus du réseau de ponts hydrogène et adjacent à la pochette de liaison du récepteur qui semble important pour la stabilisation de l'état inactif du récepteur ainsi que pour son activation par un ligand. Dans l'ensemble, les résultats suggèrent que l'activation de la voie de la protéine G[indice inférieur q/11] est associée avec une transition conformationnelle spécifique stabilisée par l'agoniste alors que l'activation de la voie des β-arrestines est associée à une stabilisation de l'état de repos du récepteur. / Abstract: Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. Having better control over the signaling pathways activated or inhibited by drugs could lead to fewer undesirable effects. Unfortunately, the structural mechanisms involved in the transmission of signal across the cell membrane through the receptors are poorly understood, which limits the rational development of new molecules targetting specific signaling pathways. The angiotensin-II type 1 (AT[subscript 1]) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the G[subscript q/11] protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT[subscript 1] receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore interactions and movements that define the conformational landscape of the AT[subscript 1] receptor. We have also verified how this conformational landscape is modified by mutations (N111G, N111W, D74N) and ligands (AngII, [Sar[superscript 1]Ile[superscript 8]]AngII) that have different signaling properties on the G[subscript q/11] pathway and the β-arrestin pathway. The results provide a better understanding of the role of a hydrogen bond network formed of conserved polar residues in the receptor core which include residues N111[superscript 3.35] and D74[superscript 2.50]. The results also reveal the existence of a cluster of hydrophobic residues located right above the hydrogen bonds network and adjacent to the binding pocket that appears important for the stabilization of the ground state of the receptor as well as its ligand-induced activation. As a whole, the results suggest that activation of the G[supbscript q/11] pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor.

Page generated in 0.0774 seconds