• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 5
  • 5
  • 2
  • Tagged with
  • 47
  • 47
  • 13
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Targeted delivery of a colchicine analogue provides synergy with ATR inhibition in cancer cells

Barnieh, Francis M., Morais, Goreti R., Garland, Herbie, Loadman, Paul, Falconer, Robert A. 05 October 2023 (has links)
Yes / Despite significant preclinical promise as anticancer agents, vascular-disrupting agents have yet to fulfil their clinical potential due to systemic toxicities. ICT2588 is a tumour-selective MT1-MMP-targeted prodrug of azademethylcolchicine, ICT2552. We investigate activation of ICT2588 and subsequent release of ICT2552 in tumour cells, and examine its ability to induce G2/M cell cycle arrest. We also explore synergism between ICT2588 and ATR inhibition, since colchicine, in addition to its vascular-disrupting properties, is known to induce G2/M arrest, DNA damage, and trigger apoptosis. Several ATR inhibitors are currently undergoing clinical evaluation. The cellular activation of ICT2588 was observed to correlate with MT1-MMP expression, with selective release of ICT2552 not compromised by cellular uptake and prodrug activation mechanisms. ICT2588 induced G2/M arrest, and triggered apoptosis in MT1-MMP-expressing cells, but not in cells lacking MT1-MMP expression, while ICT2552 itself induced G2/M arrest and triggered apoptosis in both cell lines. Interestingly, we uncovered that the intracellular release and accumulation dynamics of ICT2552 subsequent to prodrug activation provided synergism with an ATR inhibitor in a way not observed with direct administration of ICT2552. These findings have important potential implications for clinical combinations of ICT2588 and DNA repair inhibitors.
42

Studies on Near-IR Light Photocytotoxic Oxovanadium Complexes

Prasad, Puja January 2013 (has links) (PDF)
The present thesis deals with different aspects of the chemistry of oxovanadium(IV) complexes, their interaction with double stranded DNA, photo-induced DNA cleavage, photo-enhanced cytotoxicity in visible light and red light and localisation and cellular uptake to understand the mechanism of cell death. Chapter I presents a general introduction on potential of transition metal complexes as photochemotherapeutic agents. A brief introduction about Photodynamic Therapy (PDT) as a new alternative to chemotherapy for treating cancer has been made. Various modes of interaction of small molecules with duplex DNA are described. Recent reports on metal-based photocytotoxicity, photo-induced DNA cleavage activity and cellular localization are presented in detail. Objective of the present investigation is also dealt in this Chapter. Chapter II of the thesis deals with the synthesis, characterization, DNA binding and photo-induced DNA cleavage activity of ternary oxovanadium(IV) complexes of ONO-donor 2-(2-hydroxybenzylideneamino)phenol (salamp) and phenanthroline bases to explore the photo-induced DNA cleavage activity in UV-A light of 365 nm and photocytotoxicity in visible light. Chapter III deals with the photo-induced DNA cleavage and photocytotoxicity of ternary oxovanadium(IV) complexes containing ONN-donor N-2-pyridylmethylidine-2-hydroxyphenylamine (Hpyamp) Schiff bases and phenanthroline bases. The objective of this work is to investigate the photo-induced DNA cleavage activity in near-IR light. Photocytotoxicity and cell cycle arrest have been studied in HeLa cancer cells. Chapter IV deals serendipitous discovery of planar triazinuim cationic species by vanadyl-assisted novel ring cyclization reaction. The compounds are synthesised, characterized and their DNA binding and anaerobic photoinduced DNA cleavage activity are presented. The importance of the thiazole moiety in the triazinuim species in cellular uptake has been investigated. Photocytotoxicity, localization and cell death mechanism have been studied in HeLa and MCF-7 cells. Chapter V describes the synthesis, characterization, DNA binding, photo-induced DNA cleavage activity and photocytotoxicity of oxovanadium(IV) complexes containing 2-(1H-benzimidazol-2-yl)-N-(pyridin-2-ylmethylene)ethaneamine (Hpy-aebmz) and curcumin as photosensitizer. The effect of conjugating naphthalimide on Hpy-aebmz on photoinduced DNA cleavage and photocytotoxicity has been studied. Cellular uptake, localization and mechanism of cell death induced by complexes have been investigated. Chapter VI presents ternary oxovanadium(IV) complexes having, 2-((1H-benzimidazol-2-yl)methylimino-methyl)phenol (Hsal-ambmz) and phenanthroline bases. The complexes were synthesized, characterized and their DNA binding property studied. Photo-induced DNA cleavage activity and photocytotoxicity in red light has been discussed. Anthracene has been conjugated to a tridentate ligand to investigate cellular uptake, localization and cell death mechanism. Mitochondria targeting property of the complexes having dipeptide has been studied and compared with clinically used drug Photofrin®. The references have been compiled at the end of each chapter and indicated as superscript numbers in the text. The complexes presented in this thesis are represented by bold-faced numbers. Crystallographic data of the complexes, characterized structurally by single crystal X-ray crystallography, are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight or mistake is regretted.
43

Approches radicalaires pour la fonctionnalisation directe de quinones à visée anticancereuse / Direct functionalization of anticancer quinones through radical reactions

Naturale, Guillaume 19 December 2012 (has links)
Dans le cadre d’un programme de recherche dédié à la découverte de petites molécules à visée anticancéreuse, nous avons envisagé de concevoir des composés originaux dérivés de quinones. Notre premier objectif a été d’élaborer des mimes non-peptidiques de la protéine Smac, susceptibles de participer à relancer le phénomène d’apoptose, dont la structure est rigidifiée par des contraintes conformationnelles. Par ailleurs, les kinases et les phosphatases, jouant des rôles complémentaires de phosphorylation / déphosphorylation dans le cadre du contrôle du cycle cellulaire notamment, apparaissent aussi comme des cibles intéressantes. Une étude attentive de leurs inhibiteurs connus nous a permis de mettre en avant des analogies structurales qui nous ont conduit à vouloir synthétiser des motifs fonctionnalisés de dérivés de naphtoquinones.L’introduction directe de chaînes latérales aliphatiques sur nos substrats, par création de liaisons de type C(sp2)–C(sp3), a été rendue possible grâce au développement d’une méthodologie de décarboxylation radicalaire. Dans les conditions réactionnelles mises au point, le couple Ag(I)/S2O82- est utilisé comme initiateur radicalaire et autorise la génération de radicaux alkyles par décarboxylation d’acides aminés. L’introduction directe de cycles aromatiques fonctionnalisés, via la création de liaisons de type C(sp2)–C(sp2), a été réalisée par l’intermédiaire de la génération de radicaux aryles issus de sels de diazonium stables ou d’anilines. Les procédés décrits dans ce manuscrit nous ont permis d’apporter certains éclaircissements sur la réactivité des substrats et sur les mécanismes réactionnels impliqués. / In our ongoing course dedicated to the discovery of small anticancer molecules, we designed novel quinone derivatives. Our first objective was to fashion non-peptidic Smac mimics, able to trigger apoptosis in tumor cells, displaying a structure rigidified by conformational restrictions. Otherwise, the kinases and the phosphatases, acting as phosphorylating / dephosphorylating agents mostly in the control of the cell cycle, were thought to be other relevant biological targets. An intent study of their known inhibitors allowed us to underline trends in their chemical structure and made us plan the synthesis of functionalized naphthoquinones.A dedicated approach involving radical decarboxylation of amino acids allowed the introduction of aliphatic side chains on our substrates though C(sp2)–C(sp3) bond formation. Ag(I)/S2O82- was used as alkyl radical initiator and the direct C-H alkylation of the quinonic positions could take place. C(sp2)–C(sp2) bonds were created through aryl radicals generation from stable diazonium salts or anilines which allowed the direct C-H arylation of quinones. The procedures described along this manuscript let us formulate several advances on the substrates reactivity and on the reaction mechanisms involved.
44

ProTargetMiner one step further : Deep comparative proteomics of Dying vs. Surviving cancer cells treated with anticancer compounds

Lundin, Albin January 2022 (has links)
Cancer is a leading cause of mortality worldwide, responsible for nearly one in six deaths. Thus, there is a need for a greater understanding of cancer for the development of novel therapeutics. This master thesis project aims to compare the proteome signatures between dying and surviving cancer cells treated with diverse anticancer drugs. The first aim is to investigate if drug targets behave similarly and have the same sign (up- or down-regulation) in dying versus surviving cells. The second aim is to validate that combining the dying cancer cell’s proteome with the surviving cell’s can help improve drug target rankings for anticancer treatments. The third aim is to identify proteins and pathways involved in life and death decisions by comparing dying and surviving states in response to the anticancer drugs in different cell lines. First, we demonstrate that drug target behaviour in dying versus surviving cells is almost identical for nine diverse anticancer compounds with a correlation of 0.93. To identify drug targets, orthogonal partial least squares-discriminant analysis (OPLS-DA) modelling was performed to contrast the proteome signature of one anticancer drug against all other drugs and rank the proteins based on the magnitude of the model’s predictive component. There were occasions when the dying cells gave better rankings than the surviving ones. In some cases, the best target rankings were obtained when combining the data from both surviving and dying cells. To identify proteins and pathways involved in life and death decisions, OPLS-DA modelling contrasting the two states was performed, and heatmaps and scatterplots of dying and surviving log2 fold changes were made. As a result, several pathways involved in cell survival and cell death were identified. In addition, at least six proteins consistently differentially regulated between the surviving and dying cells were identified. Such proteins can be considered as putative survival (resistance) or sensitivity biomarkers and serve as potential drug targets for the development of novel anticancer agents.
45

[en] BINUCLEATING AROYLHYDRAZONIC LIGANDS AND THEIR DICOPPER II COMPLEXES AS NEW CLASSES OF POTENTIAL ANTICANCER AGENTS: SYNTHESES, CHEMICAL CHARACTERIZATION AND BIOLOGICAL ACTIVITY / [pt] LIGANTES BINUCLEANTES AROÍL-HIDRAZÔNICOS E SEUS COMPLEXOS BINUCLEARES DE COBRE II COMO NOVAS CLASSES DE POTENCIAIS AGENTES ANTICÂNCER: SÍNTESES, CARACTERIZAÇÃO QUÍMICA E ATIVIDADE BIOLÓGICA

JESICA PAOLA RADA ARIAS 09 February 2021 (has links)
[pt] Na busca de novos quimioterápicos diferentes dos clássicos derivados de cisplatina, ligantes derivados aroíl-hidrazônicos e complexos de cobre(II) aparecem como compostos promissores. Esta tese relata o desenvolvimento e a síntese de uma nova combinação desses compostos a partir de oito ligantes bases de Schift aroíl-hidrazônicos inéditos e seus Cu2-complexos derivados de sais de perclorato ou acetato 1‒14. Os complexos de cobre(II) obtidos contêm em suas estruturas modelos estruturais de sítios ativos de algumas metaloenzimas. Os compostos foram amplamente caracterizados utilizando várias técnicas espectroscópicas e analíticas. As análises por difração de raios X de quatro ligantes e cinco complexos são descritas em detalhes nessa tese. A estabilidade dos compostos foi estudada em meio celular e sua atividade biológica foi analisada. Os resultados incluem um estudo da interação de dois ligantes derivados de tiofeno (H3L1) ou furano (H3L2) e seus respectivos complexos 1 e 2 (primeiro conjunto de compostos) com uma proteína e DNA do timo de vitelo (calf thymus DNA), com o objetivo de medir a afinidade de ligação à albumina sérica bovina e ao DNA usando as técnicas de absorção de UV/Visível e/ou fluorescência. Adicionalmente, foi visto através de técnicas de espalhamento de luz que a interação entre os compostos e a proteína é reversível. Uma importante contribuição do presente trabalho foi analisar a capacidade de clivagem do DNA plasmidial de dois complexos 1 e 2 usando a técnica de espalhamento de luz dinâmico. Neste trabalho são estudadas as alterações do raio hidrodinâmico do DNA plasmidial causada pelo corte nas hélices resultante da presença dos complexos. Ensaios de citotoxicidades em algumas células cancerígenas, revelaram a alta capacidade dos ligantes (H3L1 and H3L2) e dos complexos (1 e 2) de induzir a morte celular. Ademais, as muitas propriedades biológicas, incluindo a atividade anticancerígena do fragmento isoxazol, motivaram sua inclusão na estrutura dos ligantes H3L3 and H2L4 e complexos 3‒6 (segundo conjunto de compostos). A combinação dessas estruturas pode vir a ser promissora na procura de novos medicamentos contra o câncer. A interação dos derivados dos ligantes isoxazol-aroíl-hidrazônicos com o DNA foi diretamente estudada por espectroscopia na absorbância e fluorescência, usando as propriedades luminescentes apresentadas pelos ligantes. No caso dos complexos, o ensaio de deslocamento de brometo de etídio revelou uma afinidade importante através da intercalação nos ácidos nucleicos da sequência do DNA. Adicionalmente, este trabalho conseguiu demostrar que ligantes e complexos contendo um braço fenólico no lugar de um braço piridínico melhoram a citotoxicidade in vitro em células de câncer de mama epitelial humano, alcançando a faixa nanomolar. A capacidade de metalação e transmetalação dos ligantes binucleares H3L3 e H2L4 e seus complexos de cobre 3‒6 com Fe(II), Fe(III) e Zn(II) provenientes do meio biológico foi verificada como uma estratégia adicional para induzir a morte de células cancerígenas. Além disso, para estudar a interação dos compostos com o sistema biológico e/ou para demostrar a permeabilidade celular dos compostos, os ligantes (H3L5‒H3L7) e complexos (7‒12) foram funcionalizados com fluoróforos potentes como pireno (H3L5) (conjunto três de compostos), benzopiranotiofeno (H3L6) ou borodipirrometeno (H3L7) (conjunto quatro de compostos) associados aos fragmentos hidrazônicos. Estudos de microscopia de fluorescência do ligando H3L7 comprovaram sua presença dentro de células de câncer. Também, análises de co-localização para organelas mostraram a afinidade dos ligantes com a mitocôndria. Finalmente, motivada pelas propriedades biológicas da molécula isoniaziada e seu uso em tratamentos de quimioterapia, esta tese mostra de forma general a síntese, caracterização e citotoxicidade de um novo ligante isoniazídico (H2L8) e seus complexos de perclorato ou acetato de cobre(II) 13 e 14 (conjunto cinco de compostos) visando realizar um pedido de patente. / [en] On the search of new chemotherapeutic agents differing from the classic cisplatin family drugs, aroylhydrazonic derivatives and their copper(II) complexes appear as promising compounds. This thesis reports on the design and syntheses of a novel combination of them through eight new aroylhydrazones and their fourteen perchlorate and/or acetate Cu2-complexes 1‒14. The obtained bioinspired copper(II) complexes constitute structural models for the active sites of some type 3 copper enzymes. The compounds were fully characterized using various spectroscopic and analytical techniques. X-ray diffraction structures for four ligands and five complexes are described in detail. Compounds stability was studied in cellular medium and their biological activity was examined. The results include a large study on the interaction of two thiophene (H3L1) or furan (H3L2) ligand derivatives and their respective μ-hydroxo dicopper complexes 1 and 2 (first set of compounds) respectively, with bovine serum albumin protein and calf thymus DNA using different spectroscopic techniques, which include the binding affinity to BSA and DNA using UV/Visible and/or fluorescence techniques. Additionally, scattering techniques revealed that the interaction between the compounds and BSA induces reversible aggregation of the biomolecules. As an important contribution of the present work, the plasmid DNA cleavage ability of the complexes 1 and 2 was studied by Dynamic Light Scattering. The changes of hydrodynamic radius values of pBR322 plasmid DNA are correlated to the nick induced by the complexes in the helices. Cytotoxic assays on some cancer cells revealed the high ability of H3L1 and H3L2, and complexes 1 and 2 to induce cell death. On the other hand, the many biological properties, including anticancer activity, of the isoxazole molecule, motivated the inclusion of this moiety in two ligands H3L3 and H2L4 and four complexes 3‒6 (second set of compounds). Interaction of these isoxazole-aroylhydrazonic ligand derivatives with DNA was directly studied by absorbance and fluorescence spectroscopy, as a result of the fluorescence properties displayed by the ligands. In the case of the isoxazole-aroylhydrazonic complexes-DNA interaction, the ethidium bromide displacement assay revealed significant affinity by intercalation binding mode of the nucleic acid in the DNA sequence. Additionally, this work successfully demonstrated that ligands and complexes containing a phenol pendant arm instead of a pyridine one improve the in vitro cytotoxicity on human epithelial breast cancer cells, attaining nanomolar range. Metal chelation and transmetallation ability of binucleating ligands H3L3 and H2L4 and their copper complexes 3‒6 with Fe(II), Fe(III) and Zn(II) from the biological medium was verified as an additional cell death induction anticancer strategy. Moreover, to study the interaction of the compounds with the biological system and to demonstrate their cell permeability, ligands (H3L5‒H3L7) and complexes (7‒12) were functionalized in their hydrazone moieties with potent fluorophores, such pyrene (H3L5) (set three of compounds), benzopyranothiophene (H3L6), or boron-dipyrromethene (H3L7) derivatives (set four of compounds). Fluorescence microscopy studies proved the presence of ligand H3L7 inside cancer cells, proving its ability to pass through the cell membrane. Besides, co-localization analysis for organelles showed the affinity of this ligand for the mitochondria. Finally, motived by the wide spectrum of biological properties of the isoniazid molecule and its use in chemotherapy, this thesis reports the syntheses, characterization and cytotoxicity studies on cancer cells of a new isonicotinoyl hydrazone ligand (H2L8) and its perchlorate or acetate copper(II) complexes 13 and 14 (set five of compounds), which are involved in a patent request.
46

Insights into the Chemistry of Iron Complexes as Imaging and Photocytotoxic Agents

Basu, Uttara January 2015 (has links)
The current thesis addresses the various facets of the chemistry of photocytotoxic iron complexes including their syntheses, characterization, evaluation of the anti-proliferative activities in various cancer cell lines upon photo-exposure, mechanism of cell death, the cellular uptake, localization inside cells, the interaction with double stranded DNA and their ability to induce DNA photocleavage. Chapter I presents a general introduction to cancer and the anticancer agents. It covers various procedures available for cancer treatment and different aspects of chemotherapy are discussed in details. The mechanism of action of several chemotherapeutic agents, the DNA cleavage pathways and the anticancer activity of bleomycins are delineated. Photo-chemotherapy or photodynamic therapy which has emerged as an alternative treatment modality is described. It also contains a brief description of ideal photosensitizers and the ones that are currently approved. The potential of transition metal complexes as photo-chemotherapeutic agents is discussed based on the recent literature reports on the prospective photocytotoxic metal complexes, the photo-release of cytotoxic molecules from metal complexes, the DNA cleavage activities and their cytotoxicities. The biochemistry of iron and its medical utility which prompted the development of iron based cytotoxins has been presented. The objective of the present investigation is also defined in this chapter. Chapter II describes the syntheses, characterization, evaluation of visible light induced cytotoxicity and interaction with DNA of a series of iron(II) bis-terpyridine complexes. Some interesting redox behaviour observed for two of the complexes has been described in details and rationalized from theoretical calculations. The DNA binding affinities of the complexes and their ability to induce DNA photocleavage in green light are discussed. The importance of this work lies in the remarkable photocytotoxic behaviour of the iron(II) complexes with visible light which was not reported earlier. Chapter III addresses the syntheses of a series of iron(III) catecholate complexes which upon irradiation with red light can initiate photoreactions to generate cytotoxic species and induce death in HeLa, HaCaT, MCF-7 and A549 cells. The mechanisms of cell death, effect of the complexes on the cell cycle under various conditions, the uptake inside cells and the cellular localization of the complexes are studied. The DNA binding affinities of the five complexes and their ability to induce DNA photocleavage in red light are also presented here. These are the first iron based complexes to show red light induced photocytotoxicity. Chapter IV addresses the drawbacks associated with the aforementioned iron(III) catecholates and their modification with a mitochondria targeting triphenylphosphonium unit. The synthesis, characterization, photocytotoxicities in HeLa, HaCaT, MCF-7 and A549, cell death mechanisms and cellular uptake and localization of four iron(III) complexes are discussed. Chapter V describes the syntheses, characterization and the biological activities of carbohydrate appended iron(III) complexes and their non-glucose analogues. The selective and faster internalization of the glyco-conjugated complexes in HeLa cells has been studied using various spectroscopic and microscopic techniques. The red light induced cytotoxicities of the complexes, their effect on the progression of the cell cycle with and without irradiation and the mechanisms of cell death are explored. DNA binding abilities and photocleavage of DNA are also discussed. Chapter VI presents the syntheses, characterization of a series of iron(III) complexes of a pyridoxal derivative and their salicyldehyde analogues for exploring their differential photocytotoxicity and cellular uptake in cancer cells compared to normal cells. The visible light induced cytotoxicities of the complexes in HeLa, HaCaT, MCF-7 A549 cells and HPL1D cells, their effect on the progression of the cell cycle in dark and light, the mechanisms of cell death and the localization of the complexes inside the cells are explored. The references have been compiled at the end of each chapter and given as superscripts in the text. The complexes presented in this thesis are indicated by bold-faced numbers. Crystallography data of the complexes that are structurally characterized by single crystal X-ray crystallography are given in CIF format in the enclosed CD (Appendix-I). Due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any unintentional omission that might have happened due to oversight is regretted. INDEX WORDS: Iron complexes • Crystal structure • Red light induced cytotoxicity • Cellular imaging • DNA binding • DNA photocleavage.
47

Cytotoxicity of Metal Based Anticancer Active Complexes and their Targeted Delivery using Nanoparticles

Pramanik, Anup Kumar January 2016 (has links) (PDF)
Use of metal based anticancer medication began with the clinical approval of cisplatin in 1978. Research led to the development of six platinum based drug candidates which are in use around the world. However there is a great need to develop better treatment strategies. The present work entitled “Cytotoxicity of Metal Based Anticancer Active Complexes and Their Targeted Delivery Using Nanoparticles” is an effort to prepare cytotoxic metal complexes based on platinum(IV) and copper(II) and deliver them selectively to cancer cells using a targeting ligand, biotin, with two different delivery vehicles, viz. PEGylated polyamidoamine dendrimer (PAMAM) and gold nanoparticles (AuNPs). Chapter 1 provides a brief introduction to cancer and its characteristic features, followed by a short description about different treatment modalities in clinical practice. An account of the development of anticancer drugs starting from purely organic drugs to the field of metal based anticancer drugs is discussed. An overview of the available targeting strategies are discussed with specific examples. The section ends with the scope of the present work. Platinum based anticancer drugs currently in use contain platinum in the +2 oxidation state. These drugs showed side effects and are often ineffective against resistant cells, especially in the latter stages of treatment. A recent focus of metal based anticancer drug research is the development of platinum(IV) systems which shows promise to have greater activity in cancer cells in a reducing environment. Reported platinum(IV) dual drugs contain the components of “cisplatin” or an analogue along with an active organic drug. But there are no known dual drugs based on platinum(IV) that would generate a cytotoxic metal complex along with cisplatin. In Chapter 2, a bimetallic dual drug (M4) (Figure 1), the first of its kind, with components of cisplatin and copper bis(thiosemicarbazone) has been prepared (Figure 1). The components and the bimetallic complex were characterized using several spectroscopic techniques. The dual drug M4 was found to be highly cytotoxic (IC50 1.3 M) against HeLa cells and was better than cisplatin (IC50 6.8 M). The bimetallic complex turned out to be better than the mixture (IC50 7.2 M) of individual drugs which indicated possible synergism of the released cisplatin and the copper bis(thiosemicarbazone) from the dual drug. Figure 1: Structure of the platinum(IV) and copper bis(thiosemicarbazone) complexes. A novel approach towards conjugation of platinum(IV) drugs to a carrier has been developed using a malonate moiety (Figure 2). The bis(butyric acid) complex, Pt(NH3)2(OCOC3H7)2Cl2 (M1), was taken as model complex to demonstrate the conjugation strategy. The complex M4 was also conjugated to the partially PEGylated 5th generation PAMAM dendrimers. Figure 2: Schematic representation of the platinum(IV) drug conjugated PAMAM dendrimer. The cytotoxicity of M4 was reduced to a small extent on conjugation to the dendrimer. In the presence of 5 mM sodium ascorbate as a reducing agent, sustained release (40 %) of the drug was shown to occur over a period of 48 h by the drug release study. The reduction in cytotoxicity of the dendrimer conjugates could be due to incomplete release of the active drug. Unfortunately, no enhanced activity was observed with the additional targeting ligand, biotin. The drug uptake study revealed that the dendrimer conjugates were successful in entering cancer cells. There was no preferential uptake with biotin conjugated dendrimers which explained the similar cytotoxicity of dendrimer conjugates with and without biotin. Different delivery vehicles showed varied efficiency in delivering the pay load (drugs) to the cancer site. In this connection, PEGylated gold nanoparticles have shown good promise as a drug delivery vehicle. In Chapter 3, M1 and M4 are both conjugated to malonate functionalized PEGylated gold nanoparticles (30 nm). Biotin was also attached to the AuNPs for targeting HeLa cells. Figure 3: Schematic representation of the platinum(IV) drug and biotin conjugated AuNPs. The AuNPs were highly stable in water without agglomeration. There was no shift in the Surface Plasmon Resonance (SPR) band after conjugation of the drug molecules and targeting ligands. TEM images and DLS measurements showed there was no change in particle size. Drug conjugated AuNPs were also very stable in high salt concentrations as well as over a large range of pH. AuNPs with M1 were found to be less cytotoxic than the parent drug. Biotinylated AuNPs with M1 were more potent than non-biotinylated nanoparticles and increased cytotoxicity (35 %) was observed with biotin conjugation. Surprisingly, the enhanced activity of biotinylated AuNPs could not be correlated to the drug uptake study. The cytotoxicity of the bimetallic dual drug containing AuNPs were about 10-fold less and no increased activity was observed with the biotinylated conjugates. The reduced activity of AuNPs with the bimetallic drug was due to incomplete release from the AuNPs (20 % release after 48 h). But the release kinetics was very slow and sustained which might increase in vivo activity. The unexpected lower activity of biotinylated conjugates with copper bis(thiosemicarbazone) was suggestive of interference between bis(thiosemicarbazone) complex and the biotin receptor resulting in reduced drug uptake. Copper bis(thiosemicarbazone) complexes hold very good promise as a class of non-platinum anticancer drug candidates. However, they lack selectivity towards malignant cells. Recently, CuATSM has shown hypoxia selectivity and very good cytotoxicity resulting in 64CuATSM being used in advanced stages of clinical trials for imaging hypoxic cells. In Chapter 4, a copper bis(thiosemicarbazone) complex analogous to Cu(ATSM) with a redox active cleavable disulfide linker and a terminal carboxylic acid group (CuATSM-SS-COOH) was synthesised and characterised spectroscopically. The complex was highly cytotoxic and has an IC50 value (6.9 M) similar to that of cisplatin against HeLa cells. The complex was conjugated to PEGylated gold nanoparticles by amide coupling between the acid group from the drug molecule and the amine on the AuNPs (20 nm) for smart drug delivery. The gold nanoparticles were decorated with biotin for targeted delivery to the HeLa cells. Figure 4: Schematic representation of the CuATSM-SS-COOH and biotin decorated AuNPs. The CuATSM-SS-COOH was insoluble in water but conjugation to PEGylated gold nanoparticles made it water soluble. The drug molecules and biotin conjugated AuNPs were highly stable which was confirmed by TEM and DLS measurements. Similar to the study described in the previous chapter, these AuNPs were also stable in a wide range of pH and salt concentrations. In vitro glutathione (GSH) triggered release study demonstrated substantial release of the cytotoxic agent from the AuNPs (60 %) over a period of 48 h. In vitro cell viability study with HeLa cells showed reduced cytotoxicity (IC50 15 M) of AuNPs with and without biotin containing drug conjugates relative to the parent copper complex (IC50 6.9 M). The reduction of the cytotoxicity correlated well with the released amount of the active drug from the nanoconjugates over the same time period. In vivo studies demonstrated the effectiveness of these nanoparticle carriers as suitable vehicles as they exhibited nearly four-fold reduction of tumor volume without significant loss in body weight. Moreover, the biotin targeted nanoparticle showed significant (p < 0.5) reduction in tumor volume compared to the non-targeted gold nanoparticles. Thus, this smart linking strategy Can be extended to other cytotoxic complexes that suffer from non-specificity, low aqueous solubility and toxicity. Multinuclear anticancer active complexes do not act in the same way as that of their corresponding mononuclear analogues. In the case of multinuclear platinum complexes, the activity not only depends on the active moiety but also on the spacer length between the moieties. In Chapter 5, a series of multinuclear copper bis(thiosemicarbazone) complexes were prepared and characterised using different techniques. Figure 5: General structures of binuclear copper bis(thiosemicarbazone) complexes. All the complexes showed redox activity and have a very high negative reduction potential, i.e. these compounds would not be easily reduced in the biological medium and would remain as copper(II) species. As the concentration of the reducing agents are more within cancer cells, once these complexes are inside cells they would be reduced to Cu(I). These compounds were shown to be highly lipophilic from the large log P values. Unfortunately, these binuclear complexes were less active than similar mononuclear complexes. One possible reason for the reduced cytotoxicity of these complexes could be adherence of the complexes to the cell membrane due to the high lipophilicity of these complexes. Out of five different methylene spacers between two bis(thiosemicrarbazone) moieties, the complex with a three carbon spacer was shown to be the most active against HeLa cells. The complexes with five and six methylene spacers turn out to be noncytotoxic. Further experiments are necessary to reveal the mechanism of action in these complexes. In summary, bimetallic complexes can be very active and may be a way of overcoming drug resistance in platinum based therapy. A dual drug can be delivered using a malonate moiety and a disulfide linker. Gold nanoparticles are good delivery vehicles for these dual drugs and show great potential for improvement and translation to the next stage. (For figures pl refer the abstract pdf file)

Page generated in 0.1077 seconds