• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 249
  • 48
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 571
  • 571
  • 374
  • 361
  • 115
  • 114
  • 112
  • 105
  • 96
  • 94
  • 90
  • 89
  • 88
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Unconstrained Gaze Estimation Using RGB-D Camera. / Estimation du regard avec une caméra RGB-D dans des environnements utilisateur non-contraints

Kacete, Amine 15 December 2016 (has links)
Dans ce travail, nous avons abordé le problème d’estimation automatique du regard dans des environnements utilisateur sans contraintes. Ce travail s’inscrit dans la vision par ordinateur appliquée à l’analyse automatique du comportement humain. Plusieurs solutions industrielles sont aujourd’hui commercialisées et donnent des estimations précises du regard. Certaines ont des spécifications matérielles très complexes (des caméras embarquées sur un casque ou sur des lunettes qui filment le mouvement des yeux) et présentent un niveau d’intrusivité important, ces solutions sont souvent non accessible au grand public. Cette thèse vise à produire un système d’estimation automatique du regard capable d’augmenter la liberté du mouvement de l’utilisateur par rapport à la caméra (mouvement de la tête, distance utilisateur-capteur), et de réduire la complexité du système en utilisant des capteurs relativement simples et accessibles au grand public. Dans ce travail, nous avons exploré plusieurs paradigmes utilisés par les systèmes d’estimation automatique du regard. Dans un premier temps, Nous avons mis au point deux systèmes basés sur deux approches classiques: le premier basé caractéristiques et le deuxième basé semi apparence. L’inconvénient majeur de ces paradigmes réside dans la conception des systèmes d'estimation du regard qui supposent une indépendance totale entre l'image d'apparence des yeux et la pose de la tête. Pour corriger cette limitation, Nous avons convergé vers un nouveau paradigme qui unifie les deux blocs précédents en construisant un espace regard global, nous avons exploré deux directions en utilisant des données réelles et synthétiques respectivement. / In this thesis, we tackled the automatic gaze estimation problem in unconstrained user environments. This work takes place in the computer vision research field applied to the perception of humans and their behaviors. Many existing industrial solutions are commercialized and provide an acceptable accuracy in gaze estimation. These solutions often use a complex hardware such as range of infrared cameras (embedded on a head mounted or in a remote system) making them intrusive, very constrained by the user's environment and inappropriate for a large scale public use. We focus on estimating gaze using cheap low-resolution and non-intrusive devices like the Kinect sensor. We develop new methods to address some challenging conditions such as head pose changes, illumination conditions and user-sensor large distance. In this work we investigated different gaze estimation paradigms. We first developed two automatic gaze estimation systems following two classical approaches: feature and semi appearance-based approaches. The major limitation of such paradigms lies in their way of designing gaze systems which assume a total independence between eye appearance and head pose blocks. To overcome this limitation, we converged to a novel paradigm which aims at unifying the two previous components and building a global gaze manifold, we explored two global approaches across the experiments by using synthetic and real RGB-D gaze samples.
292

Restricted Boltzmann machines : from compositional representations to protein sequence analysis / Machines de Boltzmann restreintes : des représentations compositionnelles à l'analyse des séquences de protéines

Tubiana, Jérôme 29 November 2018 (has links)
Les Machines de Boltzmann restreintes (RBM) sont des modèles graphiques capables d’apprendre simultanément une distribution de probabilité et une représentation des données. Malgré leur architecture relativement simple, les RBM peuvent reproduire très fidèlement des données complexes telles que la base de données de chiffres écrits à la main MNIST. Il a par ailleurs été montré empiriquement qu’elles peuvent produire des représentations compositionnelles des données, i.e. qui décomposent les configurations en leurs différentes parties constitutives. Cependant, toutes les variantes de ce modèle ne sont pas aussi performantes les unes que les autres, et il n’y a pas d’explication théorique justifiant ces observations empiriques. Dans la première partie de ma thèse, nous avons cherché à comprendre comment un modèle si simple peut produire des distributions de probabilité si complexes. Pour cela, nous avons analysé un modèle simplifié de RBM à poids aléatoires à l’aide de la méthode des répliques. Nous avons pu caractériser théoriquement un régime compositionnel pour les RBM, et montré sous quelles conditions (statistique des poids, choix de la fonction de transfert) ce régime peut ou ne peut pas émerger. Les prédictions qualitatives et quantitatives de cette analyse théorique sont en accord avec les observations réalisées sur des RBM entraînées sur des données réelles. Nous avons ensuite appliqué les RBM à l’analyse et à la conception de séquences de protéines. De part leur grande taille, il est en effet très difficile de simuler physiquement les protéines, et donc de prédire leur structure et leur fonction. Il est cependant possible d’obtenir des informations sur la structure d’une protéine en étudiant la façon dont sa séquence varie selon les organismes. Par exemple, deux sites présentant des corrélations de mutations importantes sont souvent physiquement proches sur la structure. A l’aide de modèles graphiques tels que les Machine de Boltzmann, on peut exploiter ces signaux pour prédire la proximité spatiale des acides-aminés d’une séquence. Dans le même esprit, nous avons montré sur plusieurs familles de protéines que les RBM peuvent aller au-delà de la structure, et extraire des motifs étendus d’acides aminés en coévolution qui reflètent les contraintes phylogénétiques, structurelles et fonctionnelles des protéines. De plus, on peut utiliser les RBM pour concevoir de nouvelles séquences avec des propriétés fonctionnelles putatives par recombinaison de ces motifs. Enfin, nous avons développé de nouveaux algorithmes d’entraînement et des nouvelles formes paramétriques qui améliorent significativement la performance générative des RBM. Ces améliorations les rendent compétitives avec l’état de l’art des modèles génératifs tels que les réseaux génératifs adversariaux ou les auto-encodeurs variationnels pour des données de taille intermédiaires. / Restricted Boltzmann machines (RBM) are graphical models that learn jointly a probability distribution and a representation of data. Despite their simple architecture, they can learn very well complex data distributions such the handwritten digits data base MNIST. Moreover, they are empirically known to learn compositional representations of data, i.e. representations that effectively decompose configurations into their constitutive parts. However, not all variants of RBM perform equally well, and little theoretical arguments exist for these empirical observations. In the first part of this thesis, we ask how come such a simple model can learn such complex probability distributions and representations. By analyzing an ensemble of RBM with random weights using the replica method, we have characterised a compositional regime for RBM, and shown under which conditions (statistics of weights, choice of transfer function) it can and cannot arise. Both qualitative and quantitative predictions obtained with our theoretical analysis are in agreement with observations from RBM trained on real data. In a second part, we present an application of RBM to protein sequence analysis and design. Owe to their large size, it is very difficult to run physical simulations of proteins, and to predict their structure and function. It is however possible to infer information about a protein structure from the way its sequence varies across organisms. For instance, Boltzmann Machines can leverage correlations of mutations to predict spatial proximity of the sequence amino-acids. Here, we have shown on several synthetic and real protein families that provided a compositional regime is enforced, RBM can go beyond structure and extract extended motifs of coevolving amino-acids that reflect phylogenic, structural and functional constraints within proteins. Moreover, RBM can be used to design new protein sequences with putative functional properties by recombining these motifs at will. Lastly, we have designed new training algorithms and model parametrizations that significantly improve RBM generative performance, to the point where it can compete with state-of-the-art generative models such as Generative Adversarial Networks or Variational Autoencoders on medium-scale data.
293

Etude du contrôle sensorimoteur dans un contexte artificiel simplifié en vue d'améliorer le contrôle des prothèses myoélectriques. / Sensorimotor control in a simplified artificial context to improve the control of future myoelectric prosthesis.

Couraud, Mathilde 07 December 2018 (has links)
L'amputation du membre supérieur, dont la prévalence est comparable à celle des maladies orphelines, induit chez les patients une perte considérable d'autonomie dans la majorité des tâches simples de la vie quotidienne. Pour pallier ces difficultés, les prothèses myoélectriques actuelles proposent une multitude de mouvements possibles. Cependant, leur contrôle non intuitif et lourd cognitivement requiert un apprentissage long et difficile, qui pousse une proportion importante de patients amputés à l'abandon de la prothèse. Dans cette thèse, nous avons cherché à identifier l'origine des difficultés et les manques du contrôle myoélectrique en comparaison au contrôle sensorimoteur naturel, dans le but à terme de proposer de meilleures solutions de restitution et de suppléance. Pour cela, nous avons manipulé diverses conditions expérimentales dans un contexte d'interface homme-machine simplifié où des sujets non amputés contrôlent un curseur sur un écran à partir de contractions isométriques, i.e. des contractions qui n'engendrent pas de mouvement. Cette condition isométrique nous a permis de nous approcher de la condition de la personne amputée contrôlant sa prothèse à partir de l'activité électrique (EMG) de ses muscles résiduels, en absence de mouvement articulaire. Durant une tâche d'atteinte de cible, nous avons entre autre démontré le bénéfice d'une adaptation conjointe du décodeur qui traduit les activités EMG en mouvement du curseur, venant s'ajouter à la propre adaptation du plan de mouvement des sujets en réponse à des perturbations orientées. De plus, il a été mis en évidence que ce bénéfice est d'autant plus important que la dynamique d'adaptation artificielle du décodeur s'inspire de celle de l'Homme. Dans des tâches d'acquisition et de poursuite de cible, impliquant davantage les mécanismes de régulation en ligne du mouvement, nous avons mis en évidence l'importance d'une congruence immédiate entre les informations sensorimotrices et la position du curseur à l'écran pour permettre des corrections rapides et efficaces. Dans une condition où le niveau de bruit du système est relativement faible, comme avec l'utilisation du signal de forces plus stable que l'habituel signal EMG, cette congruence explique, en partie, la supériorité d'un contrôle d'ordre 0 (i.e. position) sur un contrôle d'ordre 1 (i.e.} vitesse). Cependant, dès lors que le niveau de bruit est trop important, ce qui est le cas avec le signal EMG, le filtrage induit par l'intégration nécessaire au contrôle vitesse fait que celui-ci devient plus performant que le contrôle position. L'ensemble de ces résultats suggèrent qu'un décodeur adaptatif et intuitif, respectant et suppléant au mieux les boucles du contrôle sensorimoteur naturel, est le plus à même de faciliter le contrôle des futures prothèses. / Upper limb amputation, although quite rare, induces enormous loss of autonomy for patients in most daily life activities. To overcome this loss, current myoelectric prosthesis offers a multitude of possible movements. However, current controls of these movements are typically non-intuitive and cognitively demanding, leading to a high abandon rate in response to the long and tedious learning involved. In this thesis, we aimed at identifying difficulties and gaps associated with myoelectric controls when compared to natural sensorimotor control, with the long term goal of informing the design of better solutions for prosthesis control. To do so, we manipulated several experimental conditions in a simplified human-machine interface, where non-amputated subjects controlled a cursor on a computer screen from isometric contractions, i.e. muscle contractions produced in the absence of joint movement. This isometric condition was designed to get closer to a situation in which an amputee controls a myoelectric prosthesis using electrical activity (EMG) of his/her residual muscles, without movement of the missing limb. During aiming movements, we demonstrated the benefits of adapting the decoder that translate muscle activities into cursor movement in conjunction with the own subject’s adaptation of the planned movement direction in response to oriented perturbations. Furthermore, these benefits were showed to be even more important as the artificial decoder adaptation was inspired by the modeled adaptation of a human. In reaching and tracking movements toward fixed and moving targets, which increasingly involve online movement regulations, we revealed the importance of an immediate congruency between sensorimotor information and the cursor position on the screen for timely and efficient corrections. For conditions in which the level of noise associated with the control signal is relatively low, such as when using force that is more stable than the usual EMG signal used, this congruency partly explains the better performance obtained with zero order control (i.e. position) when compared to first order control (i.e. velocity). However, when the noise level increases, as is the case with EMG signals, the filtering property associated with the integration involved in a velocity control elicits better performances than with a position control. Taken together, these results suggest that intuitive and adaptive decoder, that supplies and judiciously complements natural sensorimotor feedback loops, is promising to facilitate future prosthesis controls.
294

Etude de la direction du regard dans le cadre d'interactions sociales incluant un robot / Gaze direction in the context of social human-robot interaction

Massé, Benoît 29 October 2018 (has links)
Les robots sont de plus en plus utilisés dans un cadre social. Il ne suffit plusde partager l’espace avec des humains, mais aussi d’interagir avec eux. Dansce cadre, il est attendu du robot qu’il comprenne un certain nombre de signauxambiguës, verbaux et visuels, nécessaires à une interaction humaine. En particulier, on peut extraire beaucoup d’information, à la fois sur l’état d’esprit despersonnes et sur la dynamique de groupe à l’œuvre, en connaissant qui ou quoichaque personne regarde. On parle de la Cible d’attention visuelle, désignéepar l’acronyme anglais VFOA. Dans cette thèse, nous nous intéressons auxdonnées perçues par un robot humanoı̈de qui participe activement à une in-teraction sociale, et à leur utilisation pour deviner ce que chaque personneregarde.D’une part, le robot doit “regarder les gens”, à savoir orienter sa tête(et donc la caméra) pour obtenir des images des personnes présentes. Nousprésentons une méthode originale d’apprentissage par renforcement pourcontrôler la direction du regard d’un robot. Cette méthode utilise des réseauxde neurones récurrents. Le robot s’entraı̂ne en autonomie à déplacer sa tête enfonction des données visuelles et auditives. Il atteint une stratégie efficace, quilui permet de cibler des groupes de personnes dans un environnement évolutif.D’autre part, les images du robot peuvent être utilisée pour estimer lesVFOAs au cours du temps. Pour chaque visage visible, nous calculons laposture 3D de la tête (position et orientation dans l’espace) car très fortementcorrélée avec la direction du regard. Nous l’utilisons dans deux applications.Premièrement, nous remarquons que les gens peuvent regarder des objets quine sont pas visible depuis le point de vue du robot. Sous l’hypothèse quelesdits objets soient regardés au moins une partie du temps, nous souhaitonsestimer leurs positions exclusivement à partir de la direction du regard despersonnes visibles. Nous utilisons une représentation sous forme de carte dechaleur. Nous avons élaboré et entraı̂né plusieurs réseaux de convolutions afinde d’estimer la régression entre une séquence de postures des têtes, et les posi-tions des objets. Dans un second temps, les positions des objets d’intérêt, pou-vant être ciblés, sont supposées connues. Nous présentons alors un modèleprobabiliste, suggéré par des résultats en psychophysique, afin de modéliserla relation entre les postures des têtes, les positions des objets, la directiondu regard et les VFOAs. La formulation utilise un modèle markovien à dy-namiques multiples. En appliquant une approches bayésienne, nous obtenonsun algorithme pour calculer les VFOAs au fur et à mesure, et une méthodepour estimer les paramètres du modèle.Nos contributions reposent sur la possibilité d’utiliser des données, afind’exploiter des approches d’apprentissage automatique. Toutes nos méthodessont validées sur des jeu de données disponibles publiquement. De plus, lagénération de scénarios synthétiques permet d’agrandir à volonté la quantitéde données disponibles; les méthodes pour simuler ces données sont explicite-ment détaillée. / Robots are more and more used in a social context. They are required notonly to share physical space with humans but also to interact with them. Inthis context, the robot is expected to understand some verbal and non-verbalambiguous cues, constantly used in a natural human interaction. In particular,knowing who or what people are looking at is a very valuable information tounderstand each individual mental state as well as the interaction dynamics. Itis called Visual Focus of Attention or VFOA. In this thesis, we are interestedin using the inputs from an active humanoid robot – participating in a socialinteraction – to estimate who is looking at whom or what.On the one hand, we want the robot to look at people, so it can extractmeaningful visual information from its video camera. We propose a novelreinforcement learning method for robotic gaze control. The model is basedon a recurrent neural network architecture. The robot autonomously learns astrategy for moving its head (and camera) using audio-visual inputs. It is ableto focus on groups of people in a changing environment.On the other hand, information from the video camera images are used toinfer the VFOAs of people along time. We estimate the 3D head poses (lo-cation and orientation) for each face, as it is highly correlated with the gazedirection. We use it in two tasks. First, we note that objects may be lookedat while not being visible from the robot point of view. Under the assump-tion that objects of interest are being looked at, we propose to estimate theirlocations relying solely on the gaze direction of visible people. We formulatean ad hoc spatial representation based on probability heat-maps. We designseveral convolutional neural network models and train them to perform a re-gression from the space of head poses to the space of object locations. Thisprovide a set of object locations from a sequence of head poses. Second, wesuppose that the location of objects of interest are known. In this context, weintroduce a Bayesian probabilistic model, inspired from psychophysics, thatdescribes the dependency between head poses, object locations, eye-gaze di-rections, and VFOAs, along time. The formulation is based on a switchingstate-space Markov model. A specific filtering procedure is detailed to inferthe VFOAs, as well as an adapted training algorithm.The proposed contributions use data-driven approaches, and are addressedwithin the context of machine learning. All methods have been tested on pub-licly available datasets. Some training procedures additionally require to sim-ulate synthetic scenarios; the generation process is then explicitly detailed.
295

Apprentissage automatique pour la détection d'anomalies dans les données ouvertes : application à la cartographie / Satellite images analysis for anomaly detection in open geographical data.

Delassus, Rémi 23 November 2018 (has links)
Dans cette thèse nous étudions le problème de détection d’anomalies dans les données ouvertes utilisées par l’entreprise Qucit ; aussi bien les données métiers de ses clients, que celles permettant de les contextualiser. Dans un premier temps, nous nous sommes intéressés à la détection de vélos défectueux au sein des données de trajets du système de vélo en libre service de New York. Nous cherchons des données reflétant une anomalie dans la réalité. Des caractéristiques décrivant le comportement de chaque vélo observé sont partitionnés. Les comportements anormaux sont extraits depuis ce partitionnement et comparés aux rapports mensuels indiquant le nombre de vélos réparés ; c’est un problème d’apprentissage à sortie agrégée. Les résultats de ce premier travail se sont avérés insatisfaisant en raison de la pauvreté des données. Ce premier volet des travaux a ensuite laissé place à une problématique tournée vers la détection de bâtiments au sein d’images satellites. Nous cherchons des anomalies dans les données géographiques qui ne reflètent pas la réalité. Nous proposons une méthode de fusion de modèles de segmentation améliorant la métrique d’erreur jusqu’à +7% par rapport à la méthode standard. Nous évaluons la robustesse de notre modèle face à la suppression de bâtiments dans les étiquettes, afin de déterminer à quel point les omissions sont susceptibles d’en altérer les résultats. Ce type de bruit est communément rencontré au sein des données OpenStreetMap, régulièrement utilisées par Qucit, et la robustesse observée indique qu’il pourrait être corrigé. / In this thesis we study the problem of anomaly detection in the open data used by the Qucit company, both the business data of its customers, as well as those allowing to contextualize them.We are looking for data that reflects an anomaly in reality. Initially, we were interested in detecting defective bicycles in the trip data of New York’s bike share system. Characteristics describing the behaviour of each observed bicycle are clustered. Abnormal behaviors are extracted from this clustering and compared to monthly reports indicating the number of bikes repaired; this is an aggregate learning problem. The results of this first work were unsatisfactory due to the paucity of data. This first part of the work then gave way to a problem focused on the detection of buildings within satellite images. We are looking for anomalies in the geographical data that do not reflect reality. We propose a method of merging segmentation models that improves the error metric by up to +7% over the standard method. We assess the robustness of our model to the removal of buildings from labels to determine the extent to which omissions are likely to alter the results. This type of noise is commonly encountered within the OpenStreetMap data, regularly used by Qucit, and the robustness observed indicates that it could be corrected.
296

Réseaux Bayésiens pour fusion de données statiques et temporelles / Bayesian networks for static and temporal data fusion

Rahier, Thibaud 11 December 2018 (has links)
La prédiction et l'inférence sur des données temporelles sont très souvent effectuées en utilisant uniquement les séries temporelles. Nous sommes convaincus que ces tâches pourraient tirer parti de l'utilisation des métadonnées contextuelles associées aux séries temporelles, telles que l'emplacement, le type, etc. Réciproquement, les tâches de prédiction et d'inférence sur les métadonnées pourraient bénéficier des informations contenues dans les séries temporelles. Cependant, il n'existe pas de méthode standard pour modéliser conjointement les données de séries temporelles et les métadonnées descriptives. De plus, les métadonnées contiennent fréquemment des informations hautement corrélées ou redondantes et peuvent contenir des erreurs et des valeurs manquantes.Nous examinons d’abord le problème de l’apprentissage de la structure graphique probabiliste inhérente aux métadonnées en tant que réseau Bayésien. Ceci présente deux avantages principaux: (i) une fois structurées en tant que modèle graphique, les métadonnées sont plus faciles à utiliser pour améliorer les tâches sur les données temporelles et (ii) le modèle appris permet des tâches d'inférence sur les métadonnées uniquement, telles que l'imputation de données manquantes. Cependant, l'apprentissage de la structure de réseau Bayésien est un défi mathématique conséquent, impliquant un problème d'optimisation NP-difficile. Pour faire face à ce problème, nous présentons un algorithme d'apprentissage de structure sur mesure, inspiré de nouveaux résultats théoriques, qui exploite les dépendances (quasi)-déterministes généralement présentes dans les métadonnées descriptives. Cet algorithme est testé sur de nombreux jeux de données de référence et sur certains jeux de métadonnées industriels contenant des relations déterministes. Dans les deux cas, il s'est avéré nettement plus rapide que l'état de la l'art, et a même trouvé des structures plus performantes sur des données industrielles. De plus, les réseaux Bayésiens appris sont toujours plus parcimonieux et donc plus lisibles.Nous nous intéressons ensuite à la conception d'un modèle qui inclut à la fois des (méta)données statiques et des données temporelles. En nous inspirant des modèles graphiques probabilistes pour les données temporelles (réseaux Bayésiens dynamiques) et de notre approche pour la modélisation des métadonnées, nous présentons une méthodologie générale pour modéliser conjointement les métadonnées et les données temporelles sous forme de réseaux Bayésiens hybrides statiques-dynamiques. Nous proposons deux algorithmes principaux associés à cette représentation: (i) un algorithme d'apprentissage qui, bien qu'optimisé pour les données industrielles, reste généralisable à toute tâche de fusion de données statiques et dynamiques, et (ii) un algorithme d'inférence permettant les d'effectuer à la fois des requêtes sur des données temporelles ou statiques uniquement, et des requêtes utilisant ces deux types de données.%Nous fournissons ensuite des résultats sur diverses applications inter-domaines telles que les prévisions, le réapprovisionnement en métadonnées à partir de séries chronologiques et l’analyse de dépendance d’alarmes en utilisant les données de certains cas d’utilisation difficiles de Schneider Electric.Enfin, nous approfondissons certaines des notions introduites au cours de la thèse, et notamment la façon de mesurer la performance en généralisation d’un réseau Bayésien par un score inspiré de la procédure de validation croisée provenant de l’apprentissage automatique supervisé. Nous proposons également des extensions diverses aux algorithmes et aux résultats théoriques présentés dans les chapitres précédents, et formulons quelques perspectives de recherche. / Prediction and inference on temporal data is very frequently performed using timeseries data alone. We believe that these tasks could benefit from leveraging the contextual metadata associated to timeseries - such as location, type, etc. Conversely, tasks involving prediction and inference on metadata could benefit from information held within timeseries. However, there exists no standard way of jointly modeling both timeseries data and descriptive metadata. Moreover, metadata frequently contains highly correlated or redundant information, and may contain errors and missing values.We first consider the problem of learning the inherent probabilistic graphical structure of metadata as a Bayesian Network. This has two main benefits: (i) once structured as a graphical model, metadata is easier to use in order to improve tasks on temporal data and (ii) the learned model enables inference tasks on metadata alone, such as missing data imputation. However, Bayesian network structure learning is a tremendous mathematical challenge, that involves a NP-Hard optimization problem. We present a tailor-made structure learning algorithm, inspired from novel theoretical results, that exploits (quasi)-determinist dependencies that are typically present in descriptive metadata. This algorithm is tested on numerous benchmark datasets and some industrial metadatasets containing deterministic relationships. In both cases it proved to be significantly faster than state of the art, and even found more performant structures on industrial data. Moreover, learned Bayesian networks are consistently sparser and therefore more readable.We then focus on designing a model that includes both static (meta)data and dynamic data. Taking inspiration from state of the art probabilistic graphical models for temporal data (Dynamic Bayesian Networks) and from our previously described approach for metadata modeling, we present a general methodology to jointly model metadata and temporal data as a hybrid static-dynamic Bayesian network. We propose two main algorithms associated to this representation: (i) a learning algorithm, which while being optimized for industrial data, is still generalizable to any task of static and dynamic data fusion, and (ii) an inference algorithm, enabling both usual tasks on temporal or static data alone, and tasks using the two types of data.%We then provide results on diverse cross-field applications such as forecasting, metadata replenishment from timeseries and alarms dependency analysis using data from some of Schneider Electric’s challenging use-cases.Finally, we discuss some of the notions introduced during the thesis, including ways to measure the generalization performance of a Bayesian network by a score inspired from the cross-validation procedure from supervised machine learning. We also propose various extensions to the algorithms and theoretical results presented in the previous chapters, and formulate some research perspectives.
297

Chronicle Based Alarm Management / Gestion d’alarmes basée sur des chroniques

Vasquez Capacho, John William 13 October 2017 (has links)
La sécurité des installations industrielles implique une gestion intégrée de tous les facteurs pouvant causer des incidents. La gestion d’alarmes est une condition qui peut être formulée comme un problème de reconnaissance de motifs pour lequel les motifs temporels sont utilisés pour caractériser différentes situations typiques, en particulier liées au phases de démarrage et d'arrêt. Dans cette thèse, nous proposons une nouvelle approche de gestion des alarmes basée sur un processus de diagnostic. En considérant les alarmes et les actions des procédures d'exploitation standard comme des événements discrets, le diagnostic repose sur la reconnaissance de situation pour fournir aux opérateurs des informations pertinentes sur les défauts induisant les flux d'alarmes. La reconnaissance de situation est basée sur des chroniques qui sont apprises pour chaque situation. Nous proposons d'utiliser un modèle causal hybride du système et des simulations pour générer les séquences d'événements représentatives à partir desquelles les chroniques sont apprises automatiquement en utilisant l'algorithme « Heuristic Chronicle Discovery Algorithm Modified » (HCDAM). Une extension de cet algorithme est présentée dans cette thèse où les connaissances d'experts sont prises en compte comme des restrictions temporelles qui constituent une nouvelle entrée pour HCDAM. Deux cas d’étude illustratifs dans le domaine des procédés pétrochimiques sont présentés. / Industrial plant safety involves integrated management of all the factors that may cause incidents. Process alarm management is a requisite that can be formulated as a pattern recognition problem in which temporal patterns are used to characterize different typical situations, particularly at startup and shutdown stages. In this thesis, we propose a new approach of alarm management based on a diagnosis process. Assuming the alarms and the actions of the standard operating procedures as discrete events, diagnosis relies on situation recognition to provide the operators with relevant information about the faults inducing the alarm flows. Situation recognition is based on chronicles that are learned for every situation. We propose to use the hybrid causal model of the system and simulations to generate the representative event sequences from which the chronicles are learned using the Heuristic Chronicle Discovery Algorithm Modified (HCDAM). An extension of this algorithm is presented in this thesis where expert knowledge is included as temporal restrictions which are a new input to HCDAM. Two illustrative case studies in the field of petrochemical plants are presented.
298

Generative models for natural images

Ahmed, Faruk 08 1900 (has links)
No description available.
299

Empirical study and multi-task learning exploration for neural sequence labeling models

Lu, Peng 04 1900 (has links)
No description available.
300

Using the systematic nature of errors in NGS data to efficiently detect mutations : computational methods and application to early cancer detection / Utiliser la nature systématique des erreurs dans les données NGS pour détecter efficacement les mutations : méthodes de calcul et application à la détection précoce du cancer

Delhomme, Tiffany 01 July 2019 (has links)
La caractérisation exaustive des variations de l'ADN peut aider à progresser dans de nombreux champs liés à la génomique du cancer. Le séquençage nouvelle génération (NGS en anglais pour Next Generation Sequencing) est actuellement la technique la plus efficace pour déterminer une séquence ADN, du aux faibles coûts et durées des expériences comparé à la méthode de séquençage traditionnelle de Sanger. Cependant, la détection de mutations à partir de données NGS reste encore un problème difficile, en particulier pour les mutations somatiques présentes en très faible abondance comme lorsque l'on essaye d'identifier des mutations sous-clonales d'une tumeur, des mutations dérivées de la tumeur dans l'ADN circulant libre, ou des mutations somatiques dans des tissus normaux. La difficulté principale est de précisement distinguer les vraies mutations des artefacts de séquençage du au fait qu'ils atteignent des niveaux similaires. Dans cette thèse nous avons étudié la nature systématique des erreurs dans les données NGS afin de proposer des méthodologies efficaces capables d'identifier des mutations potentiellement en faible abondance. Dans un premier chapitre, nous decrivons needlestack, un nouvel outil d'appel de variants basé sur la modélisation des erreurs systématiques sur plusieurs échantillons pour extraire des mutations candidates. Dans un deuxième chapitre, nous proposons deux méthodes de filtrage des variants basées sur des résumés statistiques et sur de l'apprentissage automatique, dans le but de d'améliorer la précision de la détection des mutations par l'identification des erreurs non-systématiques. Finalement, dans un dernier chapitre nous appliquons ces approches pour développer des biomarqueurs de détection précoce du cancer en utilisant l'ADN circulant tumoral / Comprehensive characterization of DNA variations can help to progress in multiple cancer genomics fields. Next Generation Sequencing (NGS) is currently the most efficient technique to determine a DNA sequence, due to low experiment cost and time compared to the traditional Sanger sequencing. Nevertheless, detection of mutations from NGS data is still a difficult problem, in particular for somatic mutations present in very low abundance like when trying to identify tumor subclonal mutations, tumor-derived mutations in cell free DNA, or somatic mutations from histological normal tissue. The main difficulty is to precisely distinguish between true mutations from sequencing artifacts as they reach similar levels. In this thesis we have studied the systematic nature of errors in NGS data to propose efficient methodologies in order to accurately identify mutations potentially in low proportion. In a first chapter, we describe needlestack, a new variant caller based on the modelling of systematic errors across multiple samples to extract candidate mutations. In a second chapter, we propose two post-calling variant filtering methods based on new summary statistics and on machine learning, with the aim of boosting the precision of mutation detection through the identification of non-systematic errors. Finally, in a last chapter we apply these approaches to develop cancer early detection biomarkers using circulating tumor DNA

Page generated in 0.1124 seconds