1 |
Closing the memory gap in stochastic functional differential equationsSancier-Barbosa, Flavia Cabral 01 May 2011 (has links) (PDF)
In this paper, we obtain convergence of solutions of stochastic differential systems with memory gap to those with full finite memory. More specifically, solutions of stochastic differential systems with memory gap are processes in which the intrinsic dependence of the state on its history goes only up to a specific time in the past. As a consequence of this convergence, we obtain a new existence proof and approximation scheme for stochastic functional differential equations (SFDEs) whose coefficients have linear growth. In mathematical finance, an option pricing formula with full finite memory is obtained through convergence of stock dynamics with memory gap to stock dynamics with full finite memory.
|
2 |
Approximation Algorithms for Rectangle Piercing ProblemsMahmood, Abdullah-Al January 2005 (has links)
Piercing problems arise often in facility location, which is a well-studied area of computational geometry. The general form of the piercing problem discussed in this dissertation asks for the minimum number of facilities for a set of given rectangular demand regions such that each region has at least one facility located within it. It has been shown that even if all regions are uniform sized squares, the problem is NP-hard. Therefore we concentrate on approximation algorithms for the problem. As the known approximation ratio for arbitrarily sized rectangles is poor, we restrict our effort to designing approximation algorithms for unit-height rectangles. Our e-approximation scheme requires <I>n</I><sup><I>O</I>(1/ε??)</sup> time. We also consider the problem with restrictions like bounding the depth of a point and the width of the rectangles. The approximation schemes for these two cases take <I>n</I><sup><I>O</I>(1/ε)</sup> time. We also show how to maintain a factor 2 approximation of the piercing set in <I>O</I>(log <I>n</I>) amortized time in an insertion-only scenario.
|
3 |
Computational Complexity Of Bi-clusteringWulff, Sharon Jay January 2008 (has links)
In this work we formalize a new natural objective (or cost) function
for bi-clustering - Monochromatic bi-clustering. Our objective function is
suitable for detecting meaningful homogenous clusters based on
categorical valued input matrices. Such problems have arisen recently in
systems biology where researchers have inferred functional classifications
of biological agents based on their pairwise interactions. We
analyze the computational complexity of the resulting optimization
problems. We show that finding optimal solutions is NP-hard and
complement this result by introducing a polynomial time
approximation algorithm for this bi-clustering task. This is the first positive
approximation guarantee for bi-clustering algorithms. We also show
that bi-clustering with our objective function can be viewed as a
generalization of correlation clustering.
|
4 |
Approximation Algorithms for Rectangle Piercing ProblemsMahmood, Abdullah-Al January 2005 (has links)
Piercing problems arise often in facility location, which is a well-studied area of computational geometry. The general form of the piercing problem discussed in this dissertation asks for the minimum number of facilities for a set of given rectangular demand regions such that each region has at least one facility located within it. It has been shown that even if all regions are uniform sized squares, the problem is NP-hard. Therefore we concentrate on approximation algorithms for the problem. As the known approximation ratio for arbitrarily sized rectangles is poor, we restrict our effort to designing approximation algorithms for unit-height rectangles. Our e-approximation scheme requires <I>n</I><sup><I>O</I>(1/ε²)</sup> time. We also consider the problem with restrictions like bounding the depth of a point and the width of the rectangles. The approximation schemes for these two cases take <I>n</I><sup><I>O</I>(1/ε)</sup> time. We also show how to maintain a factor 2 approximation of the piercing set in <I>O</I>(log <I>n</I>) amortized time in an insertion-only scenario.
|
5 |
Computational Complexity Of Bi-clusteringWulff, Sharon Jay January 2008 (has links)
In this work we formalize a new natural objective (or cost) function
for bi-clustering - Monochromatic bi-clustering. Our objective function is
suitable for detecting meaningful homogenous clusters based on
categorical valued input matrices. Such problems have arisen recently in
systems biology where researchers have inferred functional classifications
of biological agents based on their pairwise interactions. We
analyze the computational complexity of the resulting optimization
problems. We show that finding optimal solutions is NP-hard and
complement this result by introducing a polynomial time
approximation algorithm for this bi-clustering task. This is the first positive
approximation guarantee for bi-clustering algorithms. We also show
that bi-clustering with our objective function can be viewed as a
generalization of correlation clustering.
|
6 |
Complexity and Approximation of the Rectilinear Steiner Tree ProblemMussafi, Noor Saif Muhammad 05 August 2009 (has links)
Given a finite set K of terminals in the plane. A
rectilinear Steiner minimum tree for K (RST) is
a tree which interconnects among these terminals
using only horizontal and vertical lines of shortest
possible length containing Steiner point. We show the
complexity of RST i.e. belongs to NP-complete.
Moreover we present an approximative method of
determining the solution of RST problem proposed by Sanjeev Arora
in 1996, Arora's Approximation Scheme. This algorithm
has time complexity polynomial in the number of
terminals for a fixed performance ratio 1 + Epsilon.
|
7 |
Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs EquationsHan, Dong January 2011 (has links)
We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped-relaxation smoother effectively reduces high frequency error. For problems where the control has jumps, restriction and interpolation methods are devised to capture the jump on the coarse grid as well as during coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid methods for solving HJB and HJBI equations arising from option pricing as well as problems where policy iteration does not converge or converges slowly.
|
8 |
Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs EquationsHan, Dong January 2011 (has links)
We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped-relaxation smoother effectively reduces high frequency error. For problems where the control has jumps, restriction and interpolation methods are devised to capture the jump on the coarse grid as well as during coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid methods for solving HJB and HJBI equations arising from option pricing as well as problems where policy iteration does not converge or converges slowly.
|
9 |
Complexity and Approximation of the Rectilinear Steiner Tree ProblemMussafi, Noor Saif Muhammad 21 July 2009 (has links)
Given a finite set K of terminals in the plane. A
rectilinear Steiner minimum tree for K (RST) is
a tree which interconnects among these terminals
using only horizontal and vertical lines of shortest
possible length containing Steiner point. We show the
complexity of RST i.e. belongs to NP-complete.
Moreover we present an approximative method of
determining the solution of RST problem proposed by Sanjeev Arora
in 1996, Arora's Approximation Scheme. This algorithm
has time complexity polynomial in the number of
terminals for a fixed performance ratio 1 + Epsilon.
|
Page generated in 0.1173 seconds