• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Consumer Behaviour

Martínez, Bárbara, Pérez, Sara January 2008 (has links)
<p>The aim of this work is to understand the consumer behaviour. The research is going to be focus on the factors that influence the consumers behaviour. The purpose of this paper is to know the different aspects that the consumers have into account when they decide to use a certain product.</p>
2

Consumer Behaviour

Martínez, Bárbara, Pérez, Sara January 2008 (has links)
The aim of this work is to understand the consumer behaviour. The research is going to be focus on the factors that influence the consumers behaviour. The purpose of this paper is to know the different aspects that the consumers have into account when they decide to use a certain product.
3

Development Of An Oceanic Rain Accumulation Product In Support Of Sea Surface Salinity Measurements From Aquarius/sac-d

Aslebagh, Shadi 01 January 2013 (has links)
Aquarius/SAC-D is a joint mission by National Aeronautics and Space Administration (NASA) and the Comision Nacional de Actividades Espaciales (CONAE), Argentine Space Agency. The satellite was launched in June 2011 and the prime remote sensing instrument is also named Aquarius (AQ). The main objective of this science program is to provide Sea Surface Salinity (SSS) maps of the global oceans every 7 days for understanding the Earth’s hydrologic cycle and for assessing long-term global climate change. The Aquarius instrument was built jointly by NASA’s Goddard Space Flight Center and the Jet Propulsion Laboratory. It is an active/passive L-band remote sensor that measures ocean brightness temperature (Tb) and radar backscatter, and these quantities are used to infer sea surface salinity. Other environmental parameters (e.g., sea surface temperature, wind speed and rain) also affect the microwave emitted radiance or brightness temperature. The SSS geophysical retrieval algorithm considers all these environmental parameters and makes the Tb corrections before retrieving SSS. Instantaneous rainfall can cause increase roughness that raises the ocean surface Tb. Further short term rain accumulation can produce a fresh water lens that floats on the ocean surface and dilutes the surface salinity. iv This thesis presents results of a study to develop an oceanic rain accumulation (RA) product that may be valuable to remote sensing engineers and algorithm developers and Aquarius scientists. The use of this RA product, along with in situ ocean salinity measurements from buoys, may be used to mitigate the effects of rain on the SSS retrieval
4

Dissemination of Geographic Location Data in Low Bandwidth Radio Networks

Olsson, Johan January 2023 (has links)
On the battlefield, having accurate positions of allied troops is crucial for making effective decisions. However, obtaining this information can be challenging, particularly outside of one's own battalion network. This research focuses on developing and evaluating methods for disseminating digital geographic position data between different interconnected radio networks in a military context. The radio networks in question are ad hoc networks that use a Wide Band Waveform (WBWF) as their communication waveform. The objective is to transfer position data between networks without overloading them. The networks have a limited bandwidth and it's shared among all nodes belonging to the network. A node is a unit with a radio at hand that can communicate with other similar configured radios. To allow networks to communicate with each other, some nodes, called gateway nodes, are geared with a second radio. The second radio is used to communicate with other nearby battalions. Protocols and algorithms can use these gateway nodes to transfer data between different networks. The research evaluates two methods, one is based on Simplified Multicast Forwarding (SMF) combined with Optimized Link State Routing (OLSR) and the other is a self-developed algorithm called Gateway Node Election (GNE) algorithm. The GNE algorithm gives control to the gateway nodes, allowing for more selective transmission of position data between different networks. To evaluate the performance of methods this thesis uses a simulation tool called Aquarius to measure the performance of the methods in various scenarios, including bandwidth usage and message age. The result shows that the GNE algorithm, compared to SMF, uses less network bandwidth and it's a more robust solution since it gives redundancy by transmitting packets again if they weren't received. The findings of this research will contribute to improving the dissemination of critical information among different radio networks in a military context.
5

Simulation Of Brightness Temperatures For The Microwave Radiometer On The Aquarius/sac-d Mission.

Khan, Salman 01 January 2009 (has links)
Microwave radiometers are highly sensitive receivers capable of measuring low levels of natural blackbody microwave emissions. Remote sensing by satellite microwave radiometers flying on low-earth, polar orbiting, satellites can infer a variety of terrestrial and atmospheric geophysical parameters for scientific and operational applications, such as weather and climate prediction. The objective of this thesis is to provide realistic simulated ocean brightness temperatures for the 3-channel Microwave Radiometer (MWR), which will be launched in May 2010 on the joint NASA/CONAE Aquarius/SAC-D Mission. These data will be used for pre-launch geophysical retrieval algorithms development and validation testing. Analyses are performed to evaluate the proposed MWR measurement geometry and verify the requirements for spatial/temporal sampling. Finally, a preliminary study is performed for the post-launch inter-satellite radiometric calibration using the WindSat polarimetric radiometer on the Coriolis satellite.
6

A Roughness Correction for Aquarius Ocean Brightness Temperature Using the CONAE MicroWave Radiometer

Hejazin, Yazan 01 January 2015 (has links)
Aquarius/SAC-D is a joint NASA/CONAE (Argentine Space Agency) Earth Sciences satellite mission to measure global sea surface salinity (SSS), using an L-band radiometer that measures ocean brightness temperature (Tb). The application of L-band radiometry to retrieve SSS is a difficult task, and therefore, precise Tb corrections are necessary to obtain accurate measurements. One of the major error sources is the effect of ocean roughness that "warms" the ocean Tb. The Aquarius (AQ) instrument (L-band radiometer/scatterometer) baseline approach uses the radar scatterometer to provide this ocean roughness correction, through the correlation of radar backscatter with the excess ocean emissivity. In contrast, this dissertation develops an ocean roughness correction for AQ measurements using the MicroWave Radiometer (MWR) instrument Tb measurements at Ka-band to remove the errors that are caused by ocean wind speed and direction. The new ocean emissivity radiative transfer model was tuned using one year (2012) of on-orbit combined data from the MWR and the AQ instruments that are collocated in space and time. The roughness correction in this paper is a theoretical Radiative Transfer Model (RTM) driven by numerical weather forecast model surface winds, combined with ancillary satellite data from WindSat and SSMIS, and environmental parameters from NCEP. This RTM provides an alternative approach for estimating the scatterometer-derived roughness correction, which is independent. The theoretical basis of the algorithm is described and results are compared with the AQ baseline scatterometer method. Also results are presented for a comparison of AQ SSS retrievals using both roughness corrections.
7

Apport des données spatiales pour la modélisation numérique de la couche de mélange du Golfe du Bengale / Remote sensing and numerical modeling of the oceanic mixed layer salinity in the Bay of Bengal

Valiya Parambil, Akhil 02 April 2015 (has links)
Le Golfe du Bengale (GdB), dans l'océan indien Nord, est sous l'influence d'intenses vents de mousson, qui se renversent saisonnièrement. Les fortes pluies et les apports fluviaux associés à la mousson de Sud-Ouest font du GdB l'une des régions les moins salées des océans tropicaux. La forte stratification haline proche de la surface qui en découle contribue à limiter le mélange vertical, ce qui maintient des températures de surface élevées et favorise la convection atmosphérique et les pluies. Cette stratification en sel a ainsi des implications profondes sur les échanges air-mer et sur le climat des pays riverains. L'objectif de ma thèse est d'améliorer la description de la variabilité de la salinité de surface (SSS) du GdB, et de comprendre ses mécanismes aux échelles de temps saisonnières à interannuelles. Les climatologies existantes ont permis de mettre en évidence un cycle saisonnier marqué de la SSS, avec un dessalement intense de la partie Nord du bassin pendant l'automne, suivi par une expansion de ces eaux dessalées le long du bord Ouest du bassin. Cette langue dessalée s'érode finalement pendant l'hiver, pour revenir à son extension minimale au printemps. Cependant, la rareté des observations in-situ de SSS ne permet d'observer les fluctuations interannuelles autour de ce cycle saisonnier que de manière parcellaire dans le GdB. Le développement récent de la télédétection spatiale de la SSS (missions SMOS et AQUARIUS) a ouvert de nouvelles opportunités à cet égard. Cette technologie reste toutefois délicate dans le cas d'un bassin de petite taille tel que le GdB, du fait des contaminations éventuelles du signal de SSS par les interférences radio et par les sources d'origine continentale. Une validation systématique des produits satellites par comparaison à un jeu de données in-situ exhaustif montre qu'Aquarius capture de façon réaliste les évolutions saisonnières et interannuelles de la SSS partout dans le GdB. A l'inverse, SMOS ne parvient pas à restituer une salinité meilleure que les climatologies existantes. / Located in the Northern Indian Ocean, the Bay of Bengal (BoB) is forced by intense seasonally reversing monsoon winds. Heavy rainfall and strong river runoffs associated with the southwest monsoon makes the bay one of the freshest regions in the tropical ocean. This surface fresh water flux induces strong near surface salinity stratification, which reduces vertical mixing and maintains high sea surface temperatures and deep atmospheric convection and rainfall. This intense near surface haline stratification has therefore profound implications on the air-sea exchanges, and on the climate of the neighboring countries. The goal of my thesis is to improve the description of the Sea surface salinity (SSS) variability in the BoB and to understand the oceanic and atmospheric processes driving this variability at seasonal and interannual timescales. Existing climatologies reveal a marked seasonal cycle of SSS with an intense freshening of the northern part of the basin during fall that subsequently spreads along the western boundary. This fresh pool finally erodes during winter, to reach its minimal extent in spring. The paucity of in-situ SSS observations however prevented to monitor the interannual fluctuations around this seasonal picture with a good spatial coverage. The recent development of SSS remote-sensing capabilities (with SMOS and AQUARIUS satellites) may help with that regard. However this is particularly challenging for a small semi-enclosed basin such as the Bay of Bengal, because of the potential contamination of the SSS signal by radio frequency interferences and land effects in the near coastal environment. A thorough validation of these satellite products to an exhaustive gridded in-situ dataset shows that Aquarius reasonably captures the large-scale observed seasonal and interannual SSS evolution everywhere in the BoB while SMOS does not perform better than existing climatologies, advocating for improvements of its SSS retrieval algorithm there.
8

Analyse des mesures radiométriques en bande-L au-dessus de l'océan : Campagnes CAROLS

Martin, Adrien 26 June 2013 (has links) (PDF)
Un regain d'intérêt pour la télédétection de la salinité de surface de l'océan (SSS) par radiométrie en bande-L (21cm) est apparu dans les années 1990 et a conduit au lancement des missions spatiales SMOS (nov. 2009) et Aquarius (juin 2011). Cependant, en raison du faible rapport signal sur bruit, l'inversion de la SSS à partir des mesures radiométriques en bande-L est très difficile. Ce travail porte sur l'étude de la signature radiométrique en bande-L des propriétés de la surface de l'océan (en particulier SSS et rugosité) à partir des mesures du radiomètre aéroporté en bande-L CAROLS, acquises dans le golfe de Gascogne en 2009 et 2010. Une première étude a montré que la SSS déduite des mesures du radiomètre CAROLS était précise à mieux que 0.3 pss dans une zone de forte variabilité spatio-temporelle avec une meilleure précision que les modèles océanographiques côtiers. La seconde étude qui combine les mesures passives (CAROLS) et active (diffusiomètre en bande-C STORM) a mis en évidence l'amélioration des nouveaux modèles de rugosité par rapport aux modèles pré-lancement satellitaires. Par ailleurs, l'étude a montré l'importance de la prise en compte des moyennes et grandes échelles de rugosité (> 20 cm) pour l'interprétation des mesures radiomé- triques loin du nadir.

Page generated in 0.0509 seconds