• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1623
  • 315
  • 292
  • 274
  • 216
  • 73
  • 56
  • 48
  • 30
  • 26
  • 11
  • 9
  • 8
  • 7
  • 7
  • Tagged with
  • 3584
  • 1299
  • 430
  • 395
  • 341
  • 252
  • 222
  • 206
  • 199
  • 197
  • 184
  • 167
  • 166
  • 165
  • 147
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Lot Streaming in Two-Stage Flow Shops and Assembly Systems

Mukherjee, Niloy Jeet 09 October 2014 (has links)
The research work presented in this dissertation relates to lot streaming in two-stage flow shops and assembly shops. Lot streaming refers to the process of splitting a production lot into sublots, and then, processing the sublots on different machines simultaneously in an overlapping manner. Such a strategy allows finished material at each stage to be transferred downstream sooner than if production and transfer batches were restricted to be the same size. In the case when each sublot consists of just one item, a single-piece-flow is obtained. Such a continuous flow is a key element of the Toyota Production System. However, single-piece-flow increases the number of transfers and the total transportation cost (time). As a result, it may not be economically justifiable in many cases, and therefore, material may have to be transferred in batches (called transfer batches, or sublots). Lot streaming addresses the problems of determining optimal sublot sizes for use in various machine environments and optimizes different performance measures.Given this relationship between lot streaming and the Toyota Production System, lot streaming can be considered a generalization of lean principles. In this dissertation, we first provide a comprehensive review of the existing literature related to lot streaming. We show that two-stage flow shop problems have been studied more frequently than other machine environments. In particular, single-lot two-machine flow shops have been very well researched and efficient solution techniques have been discovered for a large variety of problems. While two-stage flow shop lot streaming problems have been studied extensively, we find that the existing literature assumes that production rates at each stage remain constant. Such an assumption is not valid when processing rates change, for example, due to learning. Learning here, refers to the improvements in processing rates achieved due to experience gained from processing units. We consider the case when the phenomenon of learning affects processing and setup times in a two-stage flow shop processing a single lot, and when, sublot-attached setup times exist. The decrease in unit-processing time, or sublot-attached setup time, is given by Wright's learning curve. We find closed-form expressions or simple search techniques to obtain optimal sublot sizes that minimize the makespan when the effect of learning reduces processing times, sublot-attached setup times, or, both. Then, we provide a general method to transform a large family of scheduling problems related to lot streaming in the presence of learning, to their equivalent counterparts that are not influenced by learning. This transformation is valid for all integrable learning functions (including the Wright's learning curve). As a result, a large variety of new problems involving learning can be solved using existing solution techniques. We then consider lot streaming in stochastic environments in the context of sourcing material. Such problems have been well studied in the literature related to lot streaming for cost-based objective functions when demand is continuous, and when processing times are deterministic, or, for material sourcing problems when the time required to procure a lot is stochastic but is independent of the lot size. We extend this study to the case when the time required to produce a given quantity of products is stochastic and dependent on the number of units produced. We consider the case when two sublots are used, and also compare the performance of lot streaming to the case when each sublot is sourced from an independent supplier. Next, we address a new problem related to lot streaming in a two-stage assembly shop, where we minimize a weighted sum of material handling costs and makespan. We consider the case when several suppliers provide material to a single manufacturer, who then assembles units from different suppliers into a single item. We assume deterministic, but not necessarily constant, lead times for each supplier, who may use lot streaming to provide material to the manufacturer. Lead times are defined as the length of the time interval between a supplier beginning to process material and the time when the first sublot is delivered to the manufacturer; Subsequent sublots must be transported early enough so that the manufacturer is not starved of material. The supplier may reduce this lead time by using lot streaming, but at an increased material handling cost. The decrease in lead time is also affected by other factors such as lot attached/detached setup times, transportation times etc. We allow these factors to be different for each supplier, and each lot processed by the same supplier. We refer to this problem as the Assembly Lot Streaming Problem (ALSP). We show that the ALSP can be solved using two steps. The first step consists of solution to several two-stage, single-lot, flow shop, makespan minimization problems. The solution to these problems generate prospective sublot sizes. Solution methods outlined in the existing literature can be used to complete this step. The second step obtains optimal number of sublots and production sequence. For a given production sequence, this step can be executed in polynomial-time; otherwise, the second step problem is NP-hard and integer programming formulations and decomposition-based methodologies are investigated for their solution. We make very limited assumptions regarding the handling cost and the relationship between the supplier lead time and number of sublots used. As a result, our solution methodology has a wide scope. / Ph. D.
402

Thermodynamically Driven (Reversible) End-Capping of Pseudorotaxanes to Produce Rotaxanes

Fletcher, Amy L. 15 January 2004 (has links)
Rotaxanes can be synthesized using a thermodynamically driven approach of self-assembly. The thermodynamically driven approach is an efficient method to provide a better controlled synthesis of specific structures. This synthetic approach takes advantage of a labile bond between the guest molecule and the end stopper group. The reversibility of this bond allows for threading by the host molecule via chemical equilibrium. Intramolecular interactions such as hydrogen bonding and π-π stacking facilitate threading to form the pseudorotaxane which is endcapped to form the thermodynamically stable rotaxane. In this work, the synthesis and characterization of rotaxanes using a thermodynamically driven approach is reported. New OH-functionalized secondary dibenzyl ammonium hexafluorophosphate and tetrafluoroborate salts were synthesized and complexed with dibenzo-24-crown-8. The complexation between the salts and dibenzo-24-crown-8 was observed using 1D and 2D ¹H NMR spectroscopy. An association constant of 110 M⁻¹ was determined by integration for the pseudorotaxane from the ammonium hexafluorophospate salt and dibenzo-24-crown-8. The new guest species were endcapped in situ as trityl ethers to form new thermodynamically stable rotaxanes. Further work to pursue would include synthesis of rotaxanes using functionalized crown ethers for polymerization to make polyrotaxanes and synthesis of self-assembled polymers using this synthetic method. / Master of Science
403

Localization Performance Improvement of a Low-Resolution Robotic System using an Electro-Permanent Magnetic Interface and an Ensemble Kalman Filter

Martin, Jacob Ryan 17 October 2022 (has links)
As the United States is on the cusp of returning astronauts to the Moon, it becomes increasingly apparent that the assembly of structures in space will have to rely upon robots to perform the construction process. With a focus on sustaining a presence on the Moon's surface in such a harsh and unforgiving environment, demonstrating the robustness of autonomous assembly and capabilities of robotic manipulators is necessary. Current robotic assembly on Earth consists mainly of inspection or highly controlled environments, and always with a human in the loop to step in and fix issues if a problem occurs. To remove the human element, the robot system then must account for safety as well. Thus, system risk can easily overwhelm project costs. This thesis proposes a combination of hardware and state estimation solutions to improve the feasibility of low-fidelity and low-resolution robots for precision assembly tasks. Doing so reduces the risk to mission success, as the hardware becomes easier to replace or repair. The hardware modifications implement an electro-permanent magnet interface with alignment features to reduce the fidelity needed for the robot end effector. On the state estimation side, an Ensemble Kalman Filter is implemented, along with a scaling system to prevent FASER Lab hardware from becoming stuck due to hardware limitations. Overall, the three modifications improved the test robot's autonomous convergence error by 98.5%, bettering the system sufficiently to make an autonomous assembly process feasible. / Master of Science / With the dawn of new space age nearly upon us, one of the most important aspects to working in space will be robotic assembly, whether on the surface of other planetary bodies like the Moon or in zero-gravity, in order to keep astronauts safe and to reduce spaceship launch costs. Both places have their own difficult problems to deal with, and doing any actions in those locations come with a significant amount of risk involved. To reduce extreme risk, you can spend more money to over-protect the robots, or reduce the consequences of the risk. This thesis describes a way to reduce the impact of risks to a mission by checking whether inexpensive robots can be adapted and modified to be able to perform similar construction actions to a much more expensive robot. It does this by using specialized hardware and software programs to better align the robot to where it needs to go without people needing to step in and help it. The experiments showed a 98.5% improvement to the system from without any of the modifications and validated that the low-cost robot could be improved sufficiently to be useful.
404

Biocatalytic Self-Assembly of Supramolecular Charge Transfer Nanostructures Based on n-Type Semiconductor-Appended Peptide

Nalluri, S.K.M., Berdugo, C., Javid, Nadeem, Frederix, P.W.J.M., Ulijn, R.V. 30 April 2014 (has links)
No / The reversible in situ formation of a self-assembly building block (naphthalenediimide (NDI)–dipeptide conjugate) by enzymatic condensation of NDI-functionalized tyrosine (NDI-Y) and phenylalanine-amide (F-NH2) to form NDI-YF-NH2 is described. This coupled biocatalytic condensation/assembly approach is thermodynamically driven and gives rise to nanostructures with optimized supramolecular interactions as evidenced by substantial aggregation induced emission upon assembly. Furthermore, in the presence of di-hydroxy/alkoxy naphthalene donors, efficient charge-transfer complexes are produced. The dynamic formation of NDI-YF-NH2 and electronic and H-bonding interactions are analyzed and characterized by different methods. Microscopy (TEM and AFM) and rheology are used to characterize the formed nanostructures. Dynamic nanostructures, whose formation and function are driven by free-energy minimization, are inherently self-healing and provide opportunities for the development of aqueous adaptive nanotechnology.
405

Biocatalytic Amide Condensation and Gelation Controlled by Light

Sahoo, J.K., Nalluri, S.K.M., Javid, Nadeem, Webb, H., Ulijn, R.V. 25 March 2014 (has links)
No / We report on a supramolecular self-assembly system that displays coupled light switching, biocatalytic condensation/hydrolysis and gelation. The equilibrium state of this system can be regulated by light, favouring in situ formation, by protease catalysed peptide synthesis, of self-assembling trans-Azo-YF-NH2 in ambient light; however, irradiation with UV light gives rise to the cis-isomer, which readily hydrolyzes to its amino acid derivatives (cis-Azo-Y + F-NH2) with consequent gel dissolution.
406

Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels

Berdugo, C., Nalluri, S.K.M., Javid, Nadeem, Escuder, B., Miravet, J.F., Ulijn, R.V. 11 May 2015 (has links)
No / Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV–vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems.
407

Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation

Sun, L., Pitto-Barry, Anaïs, Kirby, N., Schiller, T.L., Sanchez, A.M., Dyson, M.A., Sloan, J., Wilson, N.R., O'Reilly, R.K., Dove, A.P. 17 December 2014 (has links)
Yes / Co-crystallization of polymers with different configurations/tacticities provides access to materials with enhanced performance. The stereocomplexation of isotactic poly(L-lactide) and poly(D-lactide) has led to improved properties compared with each homochiral material. Herein, we report the preparation of stereocomplex micelles from a mixture of poly(L-lactide)-b-poly(acrylic acid) and poly(D-lactide)-b-poly(acrylic acid) diblock copolymers in water via crystallization-driven self-assembly. During the formation of these stereocomplex micelles, an unexpected morphological transition results in the formation of dense crystalline spherical micelles rather than cylinders. Furthermore, mixture of cylinders with opposite homochirality in either THF/H2O mixtures or in pure water at 65 °C leads to disassembly into stereocomplexed spherical micelles. Similarly, a transition is also observed in a related PEO-b-PLLA/PEO-b-PDLA system, demonstrating wider applicability. This new mechanism for morphological reorganization, through competitive crystallization and stereocomplexation and without the requirement for an external stimulus, allows for new opportunities in controlled release and delivery applications. / University of Warwick, Swiss National Science Foundation and the EPSRC. The Royal Society - an Industry Fellowship to A.P.D. The Engineering and Physical Sciences Research Council (EP/G004897/1) - funding to support postdoctoral fellowships for A.P.B. as well as funding for J.S. and M.A.D. through the Warwick Centre for Analytical Science (EP/F034210/1). The Science City Research Alliance and the HEFCE Strategic Development Fund - funding support. Some items of equipment that were used in this research were funded by Birmingham Science City, with support from Advantage West Midlands and part-funded by the European Regional Development Fund.
408

Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers

Pitto-Barry, Anaïs, Kirby, N., Dove, A.P., O'Reilly, R.K. 29 November 2013 (has links)
Yes / We report the crystallization-driven self-assembly of diblock copolymers bearing a poly(L-lactide) block into cylindrical micelles. Three different hydrophilic corona-forming blocks have been employed: poly(4-acryloyl morpholine) (P4AM), poly(ethylene oxide) (PEO) and poly(N,N-dimethylacrylamide) (PDMA). Optimization of the experimental conditions to improve the dispersities of the resultant cylinders through variation of the solvent ratio, the polymer concentration, and the addition speed of the selective solvent is reported. The last parameter has been shown to play a crucial role in the homogeneity of the initial solution, which leads to a pure cylindrical phase with a narrow distribution of length. The hydrophilic characters of the polymers have been shown to direct the length of the resultant cylinders, with the most hydrophilic corona block leading to the shortest cylinders. / EPSRC and the University of Warwick, the Swiss National Science Foundation - Early Postdoc Mobility fellowship (Grant no PBNEP2-142949 to A.P.B.). The Warwick Research Development Fund. Some items of equipment funded by Birmingham Science City: Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West Midlands (AWM) and part funded by the European Regional Development Fund (ERDF).
409

The Copolymer blending method : a new approach for targeted assembly of micellar nanoparticles

Wright, D.B., Patterson, J.P., Pitto-Barry, Anaïs, Lu, A., Kirby, N., Gianneschi, N.C., Chassenieux, C., Colombani, O., O'Reilly, R.K. 31 August 2015 (has links)
Yes / Polymer self-assembly in solution is a simple strategy for the preparation of elegant yet complex nanomaterials. However, exhaustive synthesis of the copolymer synthons is often required to access specific assemblies. In this work we show that the blending of just two diblock copolymers with identical block lengths but varying hydrophobic monomer incorporations can be used to access a range of assemblies of intermediate hydrophobic composition. Indeed, the nanostructures produced from blending are identical to those formed with the directly synthesized copolymer of the same composition. This new approach presents researchers with a more efficient and accessible methodology to access precision self-assembled nanostructures, and we highlight its potential by applying it to a demonstrator catalytically active system. / European Science Foundation (ESF), Engineering and Physical Sciences Research Council (EPSRC), United States. Air Force. Office of Scientific Research (AFOSR)
410

Use of complementary nucleobase-containing synthetic polymers to prepare complex self-assembled morphologies in water

Kang, Y., Pitto-Barry, Anaïs, Rolph, M.S., Hua, Z., Hands-Portman, I., Kirby, N., O'Reilly, R.K. 04 June 2016 (has links)
Yes / Amphiphilic nucleobase-containing block copolymers with poly(oligo(ethylene glycol) methyl ether methacrylate) as the hydrophilic block and nucleobase-containing blocks as the hydrophobic segments were successfully synthesized using RAFT polymerization and then self-assembled via solvent switch in aqueous solutions. Effects of the common solvent on the resultant morphologies of the adenine (A) and thymine (T) homopolymers, and A/T copolymer blocks and blends were investigated. These studies highlighted that depending on the identity of the common solvent, DMF or DMSO, spherical micelles or bicontinuous micelles were obtained. We propose that this is due to the presence of A–T interactions playing a key role in the morphology and stability of the resultant nanoparticles, which resulted in a distinct system compared to individual adenine or thymine polymers. Finally, the effects of annealing on the self-assemblies were explored. It was found that annealing could lead to better-defined spherical micelles and induce a morphology transition from bicontinuous micelles to onion-like vesicles, which was considered to occur due to a structural rearrangement of complementary nucleobase interactions resulting from the annealing process. / European Research Council (ERC), University of Warwick, Engineering and Physical Sciences Research Council (EPSRC), National Science Foundation (U.S.) (NSF)

Page generated in 0.0663 seconds