• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 533
  • 76
  • 59
  • 51
  • 32
  • 17
  • 11
  • 8
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 931
  • 277
  • 240
  • 208
  • 194
  • 168
  • 126
  • 97
  • 94
  • 88
  • 85
  • 79
  • 73
  • 71
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Kinetik von Atom-Transfer Radikalischen Polymerisationen bis zu hohen Drücken / Kinetics of Atom-Transfer Radical Polymerization up to High Pressure

Morick, Joachim 26 September 2012 (has links)
No description available.
542

Social Feed Reader: Status Quo and Future Perspectives

Böhringer, Martin, Degenkolb, Alrik, Schneider, Andreas 13 May 2014 (has links) (PDF)
No description available.
543

The impact of metallic cranial implants on proton-beam radiotherapy treatment plans for near implant located tumours : A phantom study on the physical effects and agreement between simulated treatment plans and the resulting treatment for near implant located cranial tumours

Sjögren, Adam January 2018 (has links)
Within the field of radiotherapy treatments of tumour diseases, the hunt for more accurate and effective treatment methods is a continuous process. For some years ion-beam based radiotherapy, especially the proton-beam based applications, has increased in popularity and availability. The main reason behind this is the fact that ion-beam based applications make it possible to modulate the dose after the planning target volume (PTV) defined by the radiation oncologist. This means that it becomes possible to spare tissue in another way, which might result in more effective treatments, especially in the vicinity of radio sensitive organs. Ion-beam based treatments are however more sensitive to uncertainties in PTV position and beam range as ion-beams have a fixed range depending on target media and initial energy, as opposed to the conventional x-ray beams that do not really have a defined range. Instead their intensity decreases exponentially at a rate dependent of the initial energy and target media. Therefore density heterogeneities result in uncertainties in the planned treatments. As the plans normally are created using a CT-images, for which metallic implants can yield increased heterogeneities both from the implants themselves and so called metal artifacts (distortions in the images caused by different processes as the X-rays used in image acquisition goes through metals). Metallic implants affects the accuracy of a treatment, and therefore also the related risks, so it is important to have an idea of the magnitude of the impact. Therefore the aim of this study is to estimate the impact on a proton-beam based treatment plan for six cranial implants. These were one Ti-mesh implant, one temporal plate implant, one burr-hole cover implant and three craniofix implants of different sizes, which all are commonly seen at the Skandion clinic. Also the ability of the treatment planning system (TPS), used at the clinic, to simulate the effects on the plans caused by the implants is to be studied. From this result it should be estimated if the margins and practices in place at the clinic, for when it is required to aim the beam through the implant, are sufficient or if they should be changed. This study consisted of one test on the range shift effects and one test on the lateral dose distribution changes, with one preparational test in the form of a calibration of Gafchromic EBT3 films. The range shift test was performed on three of the implants, excluding the three craniofix implants using a water phantom and a treatment plan created to represent a standard treatment in the cranial area. The lateral dose distribution change test was performed as a solid phantom study using radiochromic film, for two treatment plans (one where the PTV was located \SI{2}{\centi\metre} below surface, for all implants, and one where it was located at the surface, only for the Ti-mesh and the temporal plate). The results of both tests were compared to simulations performed in the Eclipse treatment planing system (TPS) available at Skandion. The result of the range shift test showed a maximum range shift of \SI{-1.03 +- 0.01}{\milli\metre}, for the burr-hole cover implant, and as the related Eclipse simulations showed a maximal shift of \SI{-0.17 +- 0.01}{\milli\metre} there was a clear problem with the simulation. However, this might not be because of the TPS but due to errors in the CT-image reconstruction, such as, for example, geometrical errors in the representation of the implants. As the margin applied for a similar situation at the Skandion clinic (in order to correct for several uncertainty factors) is \SI{4.2}{\milli\metre} there might be a need to increase this margin depending on the situation. For the lateral distribution effects no definite results were found as the change varied in magnitude, even if it tended to manifest as a decreasing dose for the first plan and a increasing dose for the second. It was therefore concluded that further studies are needed before anything clear can be said.
544

Bilayer Light-Emitting Electrochemical Cells for Signage and Lighting Applications

Lindh, E. Mattias January 2016 (has links)
Artificial light surrounds us in a manifold of shapes. It is mainly utilized for illumination, but also for graphical communication of complex and evolving messages and information, among other things. It can be generated in different ways with incandescent lamps and fluorescent tubes constituting two common examples. Organic solid state light-generation technologies, which boast advantages such as solution processability, thin and flexible form factors, and large versatility, are modern additions to the field. But regardless of the means of generation, whenever light is to be used to communicate information, as signage or displays, it needs to be patterned. Unfortunately patterning is often complicated and expensive from a fabrication point of view, or renders the devices inefficient. To bridge the gap between present technologies and the need for low-cost and low-complexity patterned light emitters, it is important to develop new device architectures and/or fabrication procedures. In this thesis we show that patterned light emission can be attained from solution processable bilayer light-emitting electrochemical cells (LECs), in which the bilayer stack comprises an electrolyte and an organic semiconductor as the first and second layer, respectively. We investigate a subtractive direct-write approach, in which electrolyte is displaced and patterned by the contact motion of a thin stylus, as well as an additive inkjet-patterning technique. Both result in electroluminescent patterns, e.g., light-emitting sketches and microscopic signage with high pixel density. But they can also build macroscopic patterned regions with homogeneous emission depending on the design of electrolyte features. Using an in-operando optical microscopy study we have investigated the operational physics and some limiting factors of the bilayer LECs. More specifically we find that the electrolyte film homogeneity is a key property for high optical quality, and that the emitting region is defined by the location of the interfaces between electrolyte, anode, and organic semiconductor. We observe that the cationic diffusion length is less than one micrometer in our employed organic semiconductors, and rationalize the localized emission by cationic electric double-layer formation at the cathode, and the electronically insulating electrolyte at the anode. To date, the presented luminescent signage devices feature high-resolution patterns, in both pixelated and line-art form, and show great robustness in terms of fabrication and material compatibility. Being LECs, they have the potential for truly low-cost solution processing, which opens up for new applications and implementations. However, these first reports on patterned bilayer LECs leave plenty of room for improvements of the optical and electronic characteristics. For instance, if the optoelectronic properties of the devices were better understood, a rational design of microscopic electrolyte features could provide for both more efficient LECs, and for more homogeneous light emission from the patterned regions.
545

Relativistic theory of laser-induced magnetization dynamics

Mondal, Ritwik January 2017 (has links)
Ultrafast dynamical processes in magnetic systems have become the subject of intense research during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization dynamics. In particular, we build relativistic theory to explain the magnetization dynamics observed at short timescales in pump-probe magneto-optical experiments and compute from first-principles the coherent laser-induced magnetization. In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham equation that includes all relativistic effects related to spin and orbital magnetism as well as the magnetic exchange interaction and any external electromagnetic field. As it describes both particle and antiparticle, a separation between them is sought because we focus on low-energy excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that captures all relativistic contributions in first order; the most significant one is the full spin-orbit interaction (gauge invariant and Hermitian). Noteworthy, we find that this relativistic framework explains a wide range of dynamical magnetic phenomena. To mention, (i) we show that the phenomenological Landau-Lifshitz-Gilbert equation of spin dynamics can be rigorously obtained from the Dirac-Kohn-Sham equation and we derive an exact expression for the tensorial Gilbert damping. (ii) We derive, from the gauge-invariant part of the spin-orbit interaction, the existence of a relativistic interaction that linearly couples the angular momentum of the electromagnetic field and the electron spin. We show this spin-photon interaction to provide the previously unknown origin of the angular magneto-electric coupling, to explain coherent ultrafast magnetism, and to lead to a new torque, the optical spin-orbit torque. (iii) We derive a definite description of magnetic inertia (spin nutation) in ultrafast magnetization dynamics and show that it is a higher-order spin-orbit effect. (iv) We develop a unified theory of magnetization dynamics that includes spin currents and show that the nonrelativistic spin currents naturally lead to the current-induced spin-transfer torques, whereas the relativistic spin currents lead to spin-orbit torques. (v) Using the relativistic framework together with ab initio magneto-optical calculations we show that relativistic laser-induced spin-flip transitions do not explain the measured large laser-induced demagnetization. Employing the ab initio relativistic framework, we calculate the amount of magnetization that can be imparted in a material by means of circularly polarized light – the so-called inverse Faraday effect. We show the existence of both spin and orbital induced magnetizations, which surprisingly reveal a different behavior. We establish that the laser-induced magnetization is antisymmetric in the light’s helicity for nonmagnets, antiferromagnets and paramagnets; however, it is only asymmetric for ferromagnets.
546

Nuclear reactor core model for the advancednuclear fuel cycle simulator FANCSEE. Advanceduse of Monte Carlo methods in nuclear reactorcalculations

Skwarcan-Bidakowski, Alexander January 2017 (has links)
A detailed reactor core modeling of the LOVIISA-2 PWR and FORSMARK-3BWR was performed in the Serpent 2 Continuous Energy Monte-Carlocode.Both models of the reactors were completed but the approximations ofthe atomic densities of nuclides present in the core differedsignificantly.In the LOVIISA-2 PWR, the predicted atomic density for the nuclidesapproximated by Chebyshev Rational Approximation method (CRAM)coincided with the corrected atomic density simulated by the Serpent2 program. In the case of FORSMARK-3 BWR, the atomic density fromCRAM poorly approximated the data returned by the simulation inSerpent 2. Due to boiling of the moderator in the core of FORSMARK-3,the model seemed to encounter problems of fission density, whichyielded unusable results.The results based on the models of the reactor cores are significantto the FANCSEE Nuclear fuel cycle simulator, which will be used as adataset for the nuclear fuel cycle burnup in the reactors. / FANCSEE
547

Algorithms for Coherent Diffractive Imaging with X-ray Lasers

Daurer, Benedikt J. January 2017 (has links)
Coherent diffractive imaging (CDI) has become a very popular technique over the past two decades. CDI is a "lensless" imaging method which replaces the objective lens of a conventional microscope by a computational image reconstruction procedure. Its increase in popularity came together with the development of X-ray free-electron lasers (XFELs) which produce extremely bright and coherent X-rays. By facilitating these unique properties, CDI enables structure determination of non-crystalline samples at nanometre resolution and has many applications in structural biology, material science and X-ray optics among others. This work focuses on two specific CDI techniques, flash X-ray diffractive imaging (FXI) on biological samples and X-ray ptychography. While the first FXI demonstrations using soft X-rays have been quite promising, they also revealed remaining technical challenges. FXI becomes even more demanding when approaching shorter wavelengths to allow subnanometre resolution imaging. We described one of the first FXI experiments using hard X-rays and characterized the most critical components of such an experiment, namely the properties of X-ray focus, sample delivery and detectors. Based on our findings, we discussed experimental and computational strategies for FXI to overcome its current difficulties and reach its full potential. We deposited the data in the Coherent X-ray Database (CXIDB) and made our data analysis code available in a public repository. We developed algorithms targeted towards the needs of FXI experiments and implemented a software package which enables the analysis of diffraction data in real time. X-ray ptychography has developed into a very useful tool for quantitative imaging of complex materials and has found applications in many areas. However, it involves a computational reconstruction step which can be slow. Therefore, we developed a fast GPU-based ptychographic solver and combined it with a framework for real-time data processing which already starts the ptychographic reconstruction process while data is still being collected. This provides immediate feedback to the user and allows high-throughput ptychographic imaging. Finally, we have used ptychographic imaging as a method to study the wavefront of a focused XFEL beam under typical FXI conditions.  We are convinced that this work on developing strategies and algorithms for FXI and ptychography is a valuable contribution to the development of coherent diffractive imaging.
548

Social Feed Reader: Status Quo and Future Perspectives

Böhringer, Martin, Degenkolb, Alrik, Schneider, Andreas January 2009 (has links)
No description available.
549

Star Polymers and Dendrimers Based on Highly Functional Resorcin- and Pyrogallolarenes

Krause, Tilo 17 October 2006 (has links)
In the frame of this thesis different calix[4]resorcin- and calix[4]pyrogallolarene derivatives were used as platform for the synthesis of novel star polymers and dendritic structures. The objectives of this work can be portrayed under the following points: First: Synthesis and modification of calix[4]resorcin- and calix[4]pyrogallolarenes with a varying number and varying type of functional sites and their precise characterization by modern NMR techniques and single crystal X-ray diffraction. Second: Synthesis of well-defined star polymers and dendrimers with different number of arms and accordingly dendrons, based on calix[4]resorcin- and calix[4]pyrogallolarenes, via convenient polymerization and generation growth reactions and analysis of the obtained products by different methods (MALDI-TOF-MS, SEC-RI and SEC-MALLS, NMR).
550

Personalisierte Filterung von Nachrichten aus semistrukturierten Quellen: Personalisierte Filterung von Nachrichten aus semistrukturierten Quellen

Eixner, Thomas 04 May 2009 (has links)
Durch die Vielzahl von heterogenen Informationsquellen sehen sich viele Nutzer einer kaum überschaubaren Informationsflut gegenüber. Aus diesem Grund werden durch diese Arbeit die gängigen Nachrichtenformate analysiert und der aktuelle Stand der Technik im Bereich der Nachrichtenaggregatoren dargelegt. Dabei werden diese Analysen immer mit Blick auf die Möglichkeiten einer personalisierten Filterung der Inhalte durchgeführt. Anschließend wird eine im Rahmen dieser Arbeit entstandene Infrastruktur für die Aggregation, personalisierte Filterung und kollaborative Empfehlung von Inhalten aus heterogenen Nachrichtenquellen vorgestellt. Dabei wird detailiert auf die zu Grunde liegenden Konzepte eingegangen und deren praktische Umsetzung beschrieben.

Page generated in 0.0502 seconds