• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 15
  • 14
  • 10
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 46
  • 42
  • 42
  • 27
  • 20
  • 19
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

CYCLICAL PRICE MOVEMENTS IN AN ATOMISTIC MARKET

MINAGAWA, Tadashi, KAWAI, Shin 08 1900 (has links)
No description available.
12

Revealing novel degradation mechanisms in high-capacity battery materials by integrating predictive modeling with in-situ experiments

Fan, Feifei 21 September 2015 (has links)
Lithium-ion (Li-ion) batteries are critically important for portable electronics, electric vehicles, and grid-level energy storage. The development of next-generation Li-ion batteries requires high-capacity electrodes with a long cycle life. However, the high capacity of Li storage is usually accompanied by large volume changes, dramatic morphological evolution, and mechanical failures in the electrodes during charge and discharge cycling. To understand the degradation of electrodes and resulting loss of capacity, this thesis aims to develop mechanistic-based models for predicting the chemo-mechanical processes of lithiation and delithiation in high-capacity electrode materials. To this end, we develop both continuum and atomistic models that simulate mass transport, interface reaction, phase and microstructural evolution, stress generation and damage accumulation through crack or void formation in the electrodes. The modeling studies are tightly coupled with in-situ transmission electron microscopy (TEM) experiments to gain unprecedented mechanistic insights into electrochemically-driven structural evolution and damage processes in high-capacity electrodes. Our models are successfully applied to the study of the two-phase lithiation and associated stress generation in both crystalline and amorphous silicon anodes, which have the highest known theoretical charge capacity, as well as the lithiation/sodiation-induced structural changes and mechanical failures in silicon-based multilayer electrodes. The modeling studies have uncovered unexpected electrochemical reaction mechanisms and revealed novel failure modes in silicon-based nanostructured anodes. Our modeling research provides insights into how to mitigate electrode degradation and enhance capacity retention in Li-ion batteries. More broadly, our work has implications for the design of nanostructured electrodes in next-generation energy storage systems.
13

Investigations of domain-wall motion using atomistic spin dynamics

Andersson, Magnus January 2015 (has links)
In this thesis, current driven domain-wall motion is studied using atomistic simulations with the exchange coupling modeled by the Heisenberg Hamiltonian under the nearest-neighbor approximation. The investigations may be divided into two parts, each concerned with how different aspects of the systems affect the domain-wall motion. The first part deals with domain-wall width dependence of the velocity in a three dimensional geometry with simple cubic crystal structure and uniaxial anisotropy. Results from this part showed that the velocity has a minor domain-wall width dependence. For a fixed current density, the velocity increased with domain-wall width, though only from 61.5 a/ns to 64.5 a/ns as the domain-wall width was increased from 3 to 25 atoms. The second part of the investigations deals with phenomena involving mixed cubic and uniaxial anisotropy, the non-adiabaticity parameter as well as the geometry of the system. The discussion includes an account of how the spin-transfer and cubic anisotropy torques contribute to the motion for different values of the non-adiabaticity parameter. In comparing a one dimensional atomic chain and a three dimensional system with simple cubic crystal structure, but otherwise with the same material properties, results showed a difference in how the two systems responded to currents. This difference is not accounted for by the micromagnetic theory, and its origin was unable to be determined.
14

Modelo atomístico para transporte eletrônico em sistemas orgânicos desordenados / Atomistic model for electronic transport in disordered organic systems

Járlesson Gama Amazonas 11 May 2012 (has links)
Polímeros conjugados apresentam muitas propriedades interessantes para utilização como camada ativa em, por exemplo, dispositivos emissores de luz, e transistores de efeito de campo. Os processos na camada ativa são entretanto de difícil modelagem teórica, o que dificulta também o desenho de dispositivos. A dificuldade tem origem na morfologia do material: amorfo, composto de cadeias longas e possivelmente enoveladas, assim uma boa descrição estrutural é necessária para descrever o mecanismo de transporte eletrônico. Nos procedimentos mais comuns o transporte é simulado sem ligação clara com as características atomísticas do material em questão. Neste trabalho optamos por modelar o transporte eletrônico em filmes poliméricos através de uma Equação Mestre Estocástica (EME) não linear utilizando a formulação de Bässler-Miller- Abrahams para a taxa de transição eletrônica. Nossa modelagem porém inclui a simulação de filmes realísticos, a partir de modelos atomísticos construidos por Dinâmica Molecular Clássica (DMC), e a obtenção de todos os parâmetros necessários para escrever a taxa de transição a partir de cálculos quânticos de primeiros princípios. Para cada filme, foram selecionadas \"imagens\" no decorrer do tempo da DMC e para cada uma dessas, através de cálculos explícitos de ângulos e distâncias inter-sítios, construida a rede topológica de conectividades (com a respectiva taxa de transição). Para isto, foi necessária reparametrização do Campo de Forças Universal com respeito à interação não ligada de energia. Além disso, a partir de cálculos quânticos de primeiros princípios, para todos os parâmetros necessários para a EME: comprimento de conjugação, energias de sítio e integrais de transferência. Estudamos sistemas oligoméricos de para-fenileno-vinileno (PPV), cristalinos e amorfos. Obtivemos a mobilidade de portadores para diferentes filmes de PV (cristal de \'P IND. 5\'\'V IND. 4\', amorfos de \'P IND. 3\'\'V IND. 2\' e \'P IND. 26\'\'V IND. 25\'), com várias imagens para um mesmo filme, representando o comportamento a uma determinada temperatura, e ainda com diferentes concentrações de portadores: vemos claramente a necessidade de obtenção de valores médios para todas as quantidades relevantes. A metodologia proposta se mostrou capaz de incorporar o efeito das características morfológicas do material, e nossos resultados estão em boa concordância, qualitativa e quantitativamente, com resultados experimentais para sistemas símiles. / Organic conjugated polymers present several interesting properties and can be used as active layers in e.g. light emitting diodes and field effect transistors. The electronic properties in the active layer are however difficult to model theoretically, which makes it also a hard task to engineer the device. The difficulties come from the structural characteristics of the material: amorphous, but composed of long and possibly folded molecular chains, so that a sound description of the structural characteristics is needed for the understanding of the electronic transport. The usual procedures for theoretical simulation bear no clear or direct link with the atomistic characteristics of the given used material. In this work we model the transport properties of polymer films through a non-linear Stochastic Master Equation, using the B¨assler-Miller-Abrahams formulation for the electronic transition rate. Our modeling however includes the simulation of realistic films, from atomistic models built through Classical Molecular Dynamics (CMD), and extracting all the relevant parameters for the SME from ab initio quantum calculations for model systems. For each film, \"images\" were selected along the CMD time evolution and for each of them a connectivity network (with the corresponding transition rates) was built, from explicit calculations of inter-ring bond distances and bond angles. To do that, it was needed a re-parametrization of the well-known Universal Force Field, concerning the non-bonded interactions. Furthermore, in parallel with the CMD work, also the values for the application of the SME were obtained from first-principles quantum calculations: conjugation length, site energies and transfer energies. We studied para-phenylene vinylene PPV oligomeric films, in different situations: crystalline, and amorphous. We calculated hole mobilities for different PV films (crystalline P5V4, amorphous P3V2 and P26V25) with several images for the same film, representing a given temperature, and also with different carrier concentrations. We clearly see the need of averaging obtained values for all relevant quantities. The proposed methodology was shown to incorporate the effects of morphology, and our results are in good accord, qualitaqualitatively and quantitavely, with experimental results for similar systems.
15

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Hetherly, Jeffery 08 1900 (has links)
Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
16

Corrélations entre le magnétisme, la thermodynamique et la diffusion dans les alliages Fe-Mn cubiques centrés : des premiers principes aux températures finies / Interplay between magnetism, thermodynamics and diffusion in bcc Fe-Mn alloys : from first principles to finite temperatures

Schneider, Anton 18 October 2019 (has links)
Dans les alliages 3d, les propriétés magnétiques des solutés peuvent être extrêmement sensibles aux environnements chimiques locaux, et avoir un impact crucial sur diverses propriétés thermodynamiques et cinétiques. Afin de comprendre les propriétés fondamentales de ces alliages, la première partie de ce travail est dédiée à l’étude ab-initio des effets de l’environnement chimique local sur l’état magnétique des solutés de Mn dans le Fe-Mn. Diverses configurations contenant du Mn, isolé ou sous forme d’amas, en présence de lacunes ou d’impuretés interstitielles sont étudiées et leur configuration magnétique de plus basse énergie est déterminée. Un modèle effectif d’interactions est paramétré à partir des données ab-initio afin d’étudier les propriétés des alliages Fe-Mn à température finie. Les propriétés clés sont identifiées et le modèle est validé à basse température en reproduisant les résultats ab-initio. L’utilisation de ce modèle couplé à des simulations Monte Carlo permet de simuler l’évolution chimique des alliages Fe-Mn en fonction de la température et de la concentration en Mn, tout en relaxant la structure magnétique en temps réel. Afin d’illustrer les possibles applications de ce modèle, diverses propriétés sont étudiées telles que la dépendance en concentration de la température de Curie ou encore l’évolution en température de l’énergie de mélange et de l’ordre atomique à courte distance. Puisque dans ces alliages la diffusion est en général régie par mécanisme lacunaire, nous proposons aussi un formalisme prenant en compte explicitement les effets de l’ordre magnétique local sur les propriétés des lacunes. Par simulations Monte Carlo de traceurs, cette approche prédit la dépendance en température de l’auto-diffusion dans le Fe en excellent accord avec les études expérimentales. La déviation de la loi d’Arrhénius proche de la température de Curie est directement prédite, ainsi que le changement de pente entre les régimes ferromagnétique et paramagnétique. La précision du modèle de Ruch, couramment utilisé dans la littérature, est discutée au vu des résultats obtenus. Enfin, cette approche est appliquée à la diffusion d’un soluté de Mn dans le Fe pur et comparée aux résultats expérimentaux. / In 3d alloys, magnetic properties of solutes can be extremely sensitive to local chemical environments and can have a crucial impact on various thermodynamic and kinetic properties. In order to properly understand the fundamental properties of these alloys, the first part of this work is dedicated to the study of the effects of local chemical environment on the magnetic state of Mn solutes in bcc Fe-Mn by means of Density Functional Theory. Namely, configurations containing Mn, being isolated or forming a cluster, and in the presence of vacancies or interstitial impurities are investigated and their lowest-energy magnetic configuration is determined. The ab-initio data produced are then used to parameterize an effective interaction model in order to study the properties of Fe-Mn alloys at finite temperature. The key features of Fe-Mn alloys are identified, and the model is validated at low temperature by reproducing ab-initio predictions. Using this model coupled to Monte Carlo simulations, we simulate the chemical evolution of Fe-Mn properties depending on temperature and Mn concentration while relaxing the magnetic structure on-the-fly. In order to illustrate the validity and the applicability of the model, we examine certain finite temperature properties of bcc Fe-Mn alloys such as the concentration dependence of the Curie temperature or the temperature evolution of the mixing energy and the atomic short-range order. Since diffusion in Fe and Fe-Mn alloys is generally ruled by vacancy-mechanism, we also propose a formalism to take explicitly into account the properties of vacancies in the interaction model and the effect of local magnetic state on these properties. Using tracer diffusion Monte Carlo simulations, this approach predicts the temperature dependence of self-diffusion in bcc Fe in excellent agreement with experimental results, including the deviation from Arrhenius law around the Curie temperature and the change of slope between the ferromagnetic and paramagnetic regimes. The accuracy of the widely used Ruch model is discussed in the light of the present results. Finally, we apply this approach to the diffusion of a Mn solute in bcc Fe and compare with experimental results.
17

Computational Studies of Inorganic Systems with a Multiscale Modeling Approach: From Atomistic to Continuum Scale

Olatunji-Ojo, Olayinka A. 08 1900 (has links)
Multiscale modeling is an effective tool for integrating different computational methods, creating a way of modeling diverse chemical and physical phenomena. Presented are studies on a variety of chemical problems at different computational scales and also the combination of different computational methods to study a single phenomenon. The methods used encompass density functional theory (DFT), molecular dynamics (MD) simulations and finite element analysis (FEA). The DFT studies were conducted both on the molecular level and using plane-wave methods. The particular topics studied using DFT are the rational catalyst design of complexes for C—H bond activation, oxidation of nickel surfaces and the calculation of interaction properties of carbon dioxide containing systems directed towards carbon dioxide sequestration studies. Second and third row (typically precious metals) transition metal complexes are known to possess certain electronic features that define their structure and reactivity, and which are usually not observed in their first-row (base metal) congeners. Can these electronic features be conferred onto first-row transition metals with the aid of non-innocent and/or very high-field ligands? Using DFT, the impact of these electronic features upon methane C—H bond activation was modeled using the dipyridylazaallyl (smif) supporting ligand for late, first-row transition metal (M) imide, oxo and carbene complexes (M = Fe, Co, Ni, Cu; E = O, NMe, CMe2). To promote a greater understanding of the process and nature of metal passivation, first-principles analysis of partially oxidized Ni(111) and Ni(311) surface and ultra-thin film NiO layers on Ni(111) was performed. A bimodal theoretical strategy that considers the oxidation process using either a fixed GGA functional for the description of all atoms in the system, or a perturbation approach, that perturbs the electronic structure of various Ni atoms in contact with oxygen by application of the GGA+U technique was applied. Binding energy of oxygen to the nickel surfaces, charge states of nickel and oxygen, and the preferred binding mode of oxygen to nickel were studied to gain a better understanding of the formation of oxide layers. Using density functional theory, the thermodynamic properties for developing interaction potentials for molecular dynamics simulations of carbon dioxide systems were calculated. The interactions considered are Ni + H2O, Ni + Ni, Ni + CO2, CO2 + CO2, CO2 + H2O and H2O + H2O. These systems were chosen as the possible interactions that can occur when carbon dioxide is stored in the ocean. Molecular dynamics simulations using the results from the DFT studies were also conducted. Finally, thermal conduction analysis was performed on layered functionally graded materials (FGM) subjected to thermal shock by sudden cooling of the material in order to investigate the results obtained from three different mixing laws: linear, quadratic, and half-order. The functionally graded material considered was a composite of nickel and carbon nanotubes at different compositions varying from two to five layers. The middle layers for the three to five layers are composed of graded (i.e., gradually changing) percentages of nickel and carbon nanotube. The thermal conductivity, specific heat and density for the composites were calculated depending on the percentages of materials in each layer, and assuming different rules of mixture.
18

Atomistic-To-Continuum Modeling Of The Detachment Of A Graphene Sheet

Matar, Mona 16 September 2014 (has links)
No description available.
19

A Systematic Evaluation of Chemical, Physical, and Mechanical Properties of an Epoxy Resin System for Validation and Refinement of Atomistic Simulations

Ecker, Allison M. 23 May 2016 (has links)
No description available.
20

Simulation of structure of special tilt boundary and grainboundary self-diffusion in Ti

Popov, Vladimir, Urazaliev, Mihail, Stupak, Maksim 22 September 2022 (has links)
ymmetric tilt boundary [2 1 10] (01 12) in HCP titanium has been investigated by computer simulation methods using the embedded atom potential. The structure and energies of the considered boundary and the energies of formation of vacancies in it have been calculated by the method of molecular-static simulation. The stability of the boundary at elevated temperatures has been investigated by the molecular dynamics method, and the coefficients of grain-boundary diffusion have been calculated.

Page generated in 0.0516 seconds