• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 61
  • 50
  • 36
  • 34
  • 33
  • 33
  • 32
  • 28
  • 27
  • 26
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

[de] ENTWICKLUNG EINES KOLLISIONSVERMEIDUNGSSYSTEM BASIEREND AUF EINER FUZZY REGELUNG / [en] DEVELOPMENT OF AN AUTONOMOUS COLLISION AVOIDANCE SYSTEM BASED ON FUZZY CONTROL / [pt] DESENVOLVIMENTO DE UM SISTEMA AUTÔNOMO DE EVASÃO DE COLISÕES BASEADO EM CONTROLE FUZZY

RAFAEL BASILIO CHAVES 09 February 2018 (has links)
[pt] O presente trabalho apresenta um conceito para um sistema de evasão de colisões, simulado usando modelos 3D de três veículos diferentes implementados em MATLAB. Dois destes veículos foram parametrizados com dados genéricos, caracterizando automóveis de médio e grande porte. Em seguida, utilizados para realização de simulações iniciais e demonstração de conceitos. O terceiro conjunto de dados foi construído com informações do Apollo N, um veículo super esportivo. Estes diferentes conjuntos de dados foram utilizados para avaliar a capacidade do controlador de trabalhar com veículos de diferentes portes e dinâmicas de direção. A abordagem para acionar o sistema baseia-se no cálculo do tempo para a colisão (TTC; timeto- collision). O conceito foi adotado para detectar situações onde o motorista não é capaz de evitar um acidente. Depois de ser acionado, o sistema deve decidir qual manobra é a mais apropriada, dadas as condições de aderência da pista e o risco associado. O primeiro objetivo deste trabalho é desenvolver um sistema autônomo de frenagem que deve ser capaz de avaliar o risco de uma possível colisão e decidir se o condutor é capaz de evitá-la. Uma vez que o motorista não tenha tempo suficiente para reagir, o sistema deve acionar os freios automaticamente a fim de evitar um possível acidente. Além disso, o veículo possui um sistema anti-travamento (ABS), desenvolvido usando controle Fuzzy. O desempenho do controlador ABS foi avaliado em simulações usando os conjuntos de dados e testado em um veículo em escala. Em casos mais críticos, quando há baixa aderência, o veículo não é capaz de frear em uma distância razoável. Levando-se em consideração tal situação, um controle autônomo de esterçamento também foi desenvolvido, visando a possibilidade de uma manobra alternativa de evasão. Este segundo sistema foi avaliado em simulações utilizando veículos com características subesterçantes e sobreesterçantes. Os resultados mostraram que o controle de esterçamento foi capaz de realizar manobras evasivas produzindo valores razoáveis de acelerações laterais, em veículos com diferentes dinâmicas de direção. / [en] This work presents a concept for a collision avoidance system simulated using 3D-models of three different vehicles implemented in MATLAB. Two of the vehicle data sets were built with generic information, used to characterize mid-size and full-size vehicles. These standard vehicles were used in initial simulations and for demonstration of some concepts. The third data set was built with information from the Apollo N, a super sportive car. These different data sets were used to evaluate the controller s capacity to work with a range of vehicles, with different sizes and driving characteristics. The approach for triggering the system is based on the time-to-colision (TTC) estimation. This concept was adopted to recognize when the driver is not able to avoid an accident. After being triggered, the system must decide which maneuver is the most appropriate for the given friction and risk conditions. The first goal of this work is to develop an autonomous braking system which evaluates the risk of a possible collision and decides if the driver is able to avoid it. Once the driver has not enough time to react, the system must trigger the brakes automatically in order to avoid the accident. The vehicle is equipped with an embedded Anti-lock Brake System (ABS) developed using Fuzzy control. The ABS controller s performance was evaluated in simulations using the data sets and tested in a scaled vehicle. In more critical cases, when there is low friction, the vehicle is not able to brake in a reasonable distance. Considering this situation, an autonomous steering control was implemented in order to make an alternative avoidance maneuver. This second system was evaluated in simulations using vehicles with understeering and oversteering characteristics. The results pointed out that the autonomous steering control was able to perform avoidance maneuvers in a reasonable range of lateral accelerations, in vehicles with different driving tendencies. / [de] Die vorliegende Arbeit prasentiert ein Konzept fur ein Kollisionsvermeidungssystem. Dieses wird anhand von drei verschiedenen 3DFahrzeugmodellen mit Hilfe von MATLAB simuliert. Zwei der FahrzeugDatensatze basieren auf generischen Informationen, die jeweils ein Automobil der Mittelklasse und der Oberklasse reprasentieren. Diese Standardfahrzeuge wurden fur anfangliche Simulationen und zur Demonstration einiger Konzepte verwendet. Das dritte Fahrzeugmodell wurde mit Hilfe der Daten des Sportwagens Apollo N aufgebaut. Durch die Verwendung der verschiedenen Datensatze soll die Funktionsfahigkeit der Regelung auch bei verschiedenen Fahrzeugtypen mit unterschiedlichen Dimensionen und Fahreigenschaften uberpruft werden.Die Grundlage zum Auslosen des Systems ist die Abschatzung der Zeit bis zur Kollision (TTC; time-to-collision). Dieses Konzept wurde aufgegriffen, um zu entscheiden, wann der Fahrer nicht mehr in der Lage ist einen Unfall zu vermeiden. Nachdem das System ausgelost wird muss dieses anhand der Traktionsverhaltnisse und Gefahrensituation entscheiden, welches Manover am besten geeignet ist. Das erste Teilziel ist die Entwicklung eines autonomen Bremssystems, welches eine bevorstehende Kollision erkennen muss und entscheidet ob der Fahrer die Kollision eigenstandig vermeiden kann. Sobald der Fahrer nicht mehr genug Zeit hat selbst zu reagieren, muss das System die Bremsen automatisch betatigen um den Unfall zu vermeiden. Hierzu ist das Fahrzeug mit einem Antiblockiersystem (ABS) ausgestattet. Dieses wurde mit Hilfe eines Fuzzy-Kontrollers realisiert. Die Funktionstuchtigkeit der ABS-Regelung wurde mit Simulationen und anhand eines realen, skalierten Fahrzeugmodells getestet. In kritischen Situationen, kann es aufgrund der Traktionsverhaltnisse vorkommen, dass das Fahrzeug nicht mehr in der Lage ist innerhalb einer ausreichenden Strecke zum Stehen zu kommen. Um fur solche Situationen ein alternatives Ausweichmanöver anwenden zu konnen, wurde ein automatischer Lenkeingriff implementiert. Dieses System wurde anhand von Simulationen an Fahrzeugmodellen mit Ubersteuernden und Untersteuernden Eigenschaften uberprüft. Die Ergebnisse zeigten, dass die automatische Lenkeingriff-Regelung in der Lage war auch bei Fahrzeugen mit unterschiedlichen Fahreigenschaften Ausweichmanöver unter Einhaltung angemessener Querbeschleunigungen durchzufuhren.
122

Road Surface Preview Estimation Using a Monocular Camera

Ekström, Marcus January 2018 (has links)
Recently, sensors such as radars and cameras have been widely used in automotives, especially in Advanced Driver-Assistance Systems (ADAS), to collect information about the vehicle's surroundings. Stereo cameras are very popular as they could be used passively to construct a 3D representation of the scene in front of the car. This allowed the development of several ADAS algorithms that need 3D information to perform their tasks. One interesting application is Road Surface Preview (RSP) where the task is to estimate the road height along the future path of the vehicle. An active suspension control unit can then use this information to regulate the suspension, improving driving comfort, extending the durabilitiy of the vehicle and warning the driver about potential risks on the road surface. Stereo cameras have been successfully used in RSP and have demonstrated very good performance. However, the main disadvantages of stereo cameras are their high production cost and high power consumption. This limits installing several ADAS features in economy-class vehicles. A less expensive alternative are monocular cameras which have a significantly lower cost and power consumption. Therefore, this thesis investigates the possibility of solving the Road Surface Preview task using a monocular camera. We try two different approaches: structure-from-motion and Convolutional Neural Networks.The proposed methods are evaluated against the stereo-based system. Experiments show that both structure-from-motion and CNNs have a good potential for solving the problem, but they are not yet reliable enough to be a complete solution to the RSP task and be used in an active suspension control unit.
123

Sledování řidiče / Driver monitoring

Pieger, Matúš January 2021 (has links)
This master’s thesis deals with the design of systems for data collection which describe the driver’s behaviour in a car. This data is used to detect risky behaviour that the driver may commit due to inattention caused by the use of either lower or higher levels of driving automation. The thesis first describes the existing safety systems, especially in relation to the driver. Then it deals with the design of the necessary measuring scenes and the implementation of new systems based on the processing of input images which are obtained via the Intel RealSense D415 stereo camera. Every system is tested in a real vehicle environment. In the end the thesis contains an evaluation regarding the detection reliability of the created algorithms, it considers their shortcomings and possible improvements.
124

Fusion von Unfallszenarien für die Repräsentativitätsüberprüfung eines Testszenarienkataloges zur Absicherung automatisierter Fahrfunktionen

Dziuba-Kaiser, Linda 06 March 2020 (has links)
Gegenstand dieser Arbeit ist die Bewertung und Durchführung der Fusion von zwei Datensätzen, die auf Basis der Statistik der Straßenverkehrsunfälle des statistischen Bundesamtes konstruiert werden. Für die Fusionierung wird die Methode der statistischen Datenfusion angewendet. Die zu fusionierenden Datensätze werden auf die Ausgangslage der Datenfusion und Unfalldatenbanken angepasst. Anhand der Zusammenhangsstärke und Verteilung werden die passenden Variablen, die für die Datenfusion verwendet werden können, identifiziert und ausgewählt. Für die Datenfusion werden verschiedene nichtparametrische Verfahren unter der bedingten Unabhängigkeitsannahme (Distanz-Hot-Deck, Random-Hot-Deck) und unter der Beibehaltung der Unsicherheit (Imprecise Imputation) durchgeführt. Zusätzlich werden Qualitätsstufen mit einbezogen, um die Auswirkung von veränderten Variablen auszuwerten. Dabei zeigt sich, dass die Datenfusion unter der bedingten Unabhängigkeit allgemein eine unsichere Methode ist, die jedoch unter Umständen für bivariate Analysen vielversprechende Ergebnisse erzielen kann.:1. Einleitung 2. Grundlagen 3. Aufbau der simulierten Datensätze 4. Datenfusion 5. Ergebnisse 6. Zusammenfassung und Ausblick
125

FLEXPOOL: A DISTRIBUTED MODEL-FREE DEEP REINFORCEMENT LEARNING ALGORITHM FOR JOINT PASSENGERS & GOODS TRANSPORTATION

Kaushik Bharadwaj Manchella (9706697) 15 December 2020 (has links)
<div>The growth in online goods delivery is causing a dramatic surge in urban vehicle traffic from last-mile deliveries. On the other hand, ride-sharing has been on the rise with the success of ride-sharing platforms and increased research on using autonomous vehicle technologies for routing and matching. The future of urban mobility for passengers and goods relies on leveraging new methods that minimize operational costs and environmental footprints of transportation systems. </div><div><br></div><div>This paper considers combining passenger transportation with goods delivery to improve vehicle-based transportation. Even though the problem has been studied with model-based approaches where the dynamic model of the transportation system environment is defined, model-free approaches where the dynamics of the environment are learned by interaction have been demonstrated to be adaptable to new or erratic environment dynamics. </div><div><br></div><div>FlexPool is a distributed model-free deep reinforcement learning algorithm that jointly serves passengers \& goods workloads by learning optimal dispatch policies from its interaction with the environment. The model-free algorithm (as opposed to a model-based one) is an algorithm which does not use the transition probability distribution (and the reward function) associated with the Markov decision process (MDP).</div><div> The proposed algorithm pools passengers for a ride-sharing service and delivers goods using a multi-hop routing method. These flexibilities decrease the fleet's operational cost and environmental footprint while maintaining service levels for passengers and goods. The dispatching algorithm based on deep reinforcement learning is integrated with an efficient matching algorithm for passengers and goods. Through simulations on a realistic urban mobility platform, we demonstrate that FlexPool outperforms other model-free settings in serving the demands from passengers \& goods. FlexPool achieves 30\% higher fleet utilization and 35\% higher fuel efficiency in comparison to (i) model-free approaches where vehicles transport a combination of passengers \& goods without the use of multi-hop transit, and (ii) model-free approaches where vehicles exclusively transport either passengers or goods. </div>
126

Hochgenaue Positionsbestimmung von Fahrzeugen als Grundlage autonomer Fahrregime im Hochgeschwindigkeitsbereich

Niehues, Daniel 05 February 2014 (has links)
Bei der Entwicklung neuartiger und innovativer Fahrerassistenzsysteme kommt der Positions- und Ausrichtungsbestimmung von Fahrzeugen eine Schlüsselrolle zu. Dabei entscheidet die Güte der Positionsbestimmung über die Qualität, die Robustheit und den Einsatzbereich des Gesamtsystems. Verbesserungen in der Positionsbestimmung führen zu einer besseren Performanz bzw. sind die Grundvoraussetzung für die Realisierung dieser Fahrerassistenzsysteme. Ein Beispiel für solch ein neuartiges Fahrerassistenzsystem, welches auf eine hochgenaue Positionsbestimmung baut, ist der BMW TrackTrainer. Dieses Assistenzsystem soll den "normalgeübten" Autofahrer beim schnellen Erlernen der Ideallinie auf Rennstrecken unterstützen, indem das Fahrzeug die Rennstrecke völlig autonom auf einer vorher aufgezeichneten Ideallinie umrundet, während der Teilnehmer sich die Strecke aus Fahrerperspektive einprägt. Für die Realisierung eines derartigen Assistenzsystems ist eine hochgenaue Positionsbestimmung im cm-Bereich notwendig. Bisher wurde dafür eine GPS-gestützte Inertialplattform eingesetzt, welche unter guten GPS-Empfangsbedingungen die Anforderungen an die Positionierung erfüllt. Bei schlechten GPS-Empfangsbedingungen, wie sie beispielsweise auf der international bekannten Rennstrecke Nürburgring Nordschleife aufgrund von Verdeckung und Abschattung der Satellitensignale durch stark bebautes oder bewaldetes Gebiet auftreten, liefert das Positionierungssystem keine ausreichend genauen Werte, wodurch das autonome Fahren verhindert wird. Zwar gibt es neben GPS auch weitere Positionsbestimmungssysteme, die aber für den Einsatz auf Rennstrecken entweder zu ungenau sind, oder einen zu hohen Rüstaufwand erfordern würden. Um diese Lücke zu schließen, wurde im Rahmen dieser Arbeit ein hochgenaues Positionsbestimmungssystem entwickelt und evaluiert, welches auch unter schlechten GPS-Empfangsbedingungen den Anforderungen des autonomen Fahren auf Rennstrecken genügt und auf einer Fusion verschiedener Signalquellen in einem Positionsfilter beruht. Folgende Signalquellen wurden hinsichtlich Genauigkeit sowie Praxistauglichkeit für den Einsatz auf Rennstrecken experimentell untersucht: - GPS-gestützte Inertialplattform (GPS/INS) - Fahrzeugsensoren mit erweitertem Fahrzeugmodell - Digitaler Kompass - Laser-Reflexlichtschranken - Servo-Tachymeter - LIDAR-basierte Randbebauungserkennung - Videobasierte Spurerkennung - Digitale Karte. Obwohl eine GPS-gestützte Inertialplattform (GPS/INS) unter schlechten GPS-Empfangsbedingungen keine ausreichend genauen Positionswerte im cm-Bereich liefert, besitzt dieses System dennoch eine hohe Robustheit und Langzeitstabilität und stellt damit eine sehr gute Grundlage für die Positionsbestimmung auf Rennstrecken dar. Fahrzeugsensoren, bestehend aus Raddrehzahl- und Gierratensensor, schreiben die Fahrzeugposition mit Hilfe der Koppelnavigationsgleichung relativ für ca. 10s ohne eine Messung absoluter Positionswerte fort. Um die bestehenden Genauigkeitsanforderungen zu erfüllen, muss jedoch ab einer Geschwindigkeit von 30km/h das Fahrzeugmodell um eine Schwimmwinkelschätzung erweitert werden. Ein digitaler Kompass eignet sich nachweislich nicht für die Positionsbestimmung auf Rennstrecken. Hier treten aufgrund von magnetischen Interferenzen zu große Messfehler der Fahrzeugausrichtung auf, die eine Positionsstützung ungeeignet machen. Bei Referenzmessungen mit einem Servo-Tachymeter konnte die geforderte Genauigkeit dieser Messeinrichtung bei Fahrzeuggeschwindigkeiten kleiner 30km/h nachgewiesen werden. Bei höheren Geschwindigkeiten liefert das System jedoch keine Ergebnisse, was den Einsatz auf Rennstrecken ausschließt. Auf den Boden gerichtete Laser-Reflexlichtschranken können sehr präzise die Überfahrt über eine Bodenmarkierung detektieren. Da diese Überfahrten beim autonomen Fahren auf Rennstrecken nur sehr selten auftreten, ist diese Positionierungsmethode nicht geeignet. Mit Hilfe einer LIDAR-basierten Randbebauungserkennung kann die Fahrzeugposition in Kombination mit einer hochgenauen digitalen Karte der Randbebauung auf ca. 20-30cm genau geschätzt werden. Schwierigkeiten bereiten hier jedoch Unregelmäßigkeiten in der Geometrie der Randbebauung. Während parallel verlaufende Leitplanken neben der Strecke sehr gut erfasst werden können, liefern Sträucher, Erdwälle, etc. ungenaue Messergebnisse. Somit ist die LIDAR-basierte Randbebauungserkennung ein bedingt geeignetes System zur Positionsstützung auf Rennstrecken. Als vielversprechendster Ansatz zur Verbesserung der Positions- und Ausrichtungsbestimmung auf Rennstrecken konnte der Einsatz einer visuellen Spurerkennung in Verbindung mit einer hochgenauen digitalen Karte der Spurmarkierungen identifiziert werden. Hierfür wurde eine sich in Vorserie befindliche Bildverarbeitungseinheit der Firma MobileEye mit einer eigens entwi-ckelten Spurerkennung verglichen. Letztere bietet den Vorteil, Systemwissen über den Verlauf der Fahrspurmarkierung sowie negative Effekte der Fahrzeugeigendynamik mit in den Signalver-arbeitungsprozess einfließen zu lassen. Bei Vergleichsfahrten auf dem BMW eigenem Testgelände in Aschheim konnte der Vorteil der Spurdatenrückführung nachgewiesen werden. Die erwei-terte Spurerkennung hatte nachweislich gegenüber der Vorserienbildverarbeitung eine höhere Verfügbarkeit von gültigen Messwerten. Bei Messfahrten auf der Nordschleife stellte sich jedoch das Vorseriensystem von MobileEye als das deutlich robustere Spurerkennungssystem heraus. Hier führten verschmutzte Fahrbahnmarkierungen, schnell wechselnde Lichtverhältnisse sowie sonstige Straßenbeschriftungen dazu, dass die erweiterte Spurerkennung weitaus weniger gültige Messwerte lieferte als das Vorseriensystem. Aus diesem Grund fiel für Fahrten mit schlechten visuellen Bedingungen die Wahl auf das Vorserienbildverarbeitungssystem. Für den Entwurf des Positionsfilters wurden letztlich folgende Signalquellen verwendet: - GPS-gestützte Inertialplattform (GPS/INS) - Fahrzeugsensoren mit erweitertem Fahrzeugmodell - Videobasierte Spurerkennung in Kombination mit einer selbst aufgezeichneten hochge-nauen Karte der Spurmarkierungen der Teststrecke. Als Fusionsalgorithmus wurde ein erweiterter Kalman-Filter eingesetzt, da sich dieser besonders für die Zusammenführung unterschiedlicher Sensormessdaten eignet. Um eine optimale Zustandsschätzung der Fahrzeugposition und Ausrichtung zu erhalten, mussten die verwendeten Signalquellen zunächst zeitlich synchronisiert sowie auf Plausibilität geprüft werden. Als Synchronisationspunkt wurde der Messzeitpunkt der Signalquelle mit der größten Latenz verwendet. Dieser wurde mit 163ms durch für die videobasierte Spurerkennung bestimmt. Da jedoch eine verzögerte Positionsschätzung für eine stabile Reglung des Fahrzeugs für das autonome Fahren ungenügend ist, wurde die geschätzte Fahrzeugposition am Ausgang des Kalman-Filters mit Hilfe der Koppelnavigationsgleichung sowie der Fahrzeugsensoren auf den aktuellen Zeitpunkt (Latenz = 0s) prädiziert. Für die Detektion systematischer Fehler wie Radschlupf, falsch erkannte Spurmarkierung und GPS-Mehrwegeausbreitung kamen robuste Signalplausibilisierungsalgorithmen zum Einsatz. So erfolgte die Plausibilisierung der Spurerkennung unter anderem über die selbst aufgezeichnete hochgenaue Karte der Spurmarkierungen, da eine Spurerkennung nur da sinnvoll ist, wo Spurmarkierungsstützpunkte in hinterlegt sind. Für die Gültigkeitsüberprüfung der GPS-Messwerte wurde ein GPS-Offset-Beobachter entwickelt und angewendet. Die Evaluierung des entwickelten Positionsfilters wurde im Rahmen der Arbeit am Beispiel des BMW TrackTrainers auf drei ausgewählten Teststrecken mit steigendem Schwierigkeitsniveau (Verschlechterung der GPS-Empfangsbedingungen) durchgeführt. Hierfür wurde die in Echtzeit geschätzte Fahrzeugposition mit einer durch Post-Processing korrigierten Positionslösung referenziert. Die Auswertung der Ergebnisse bewies, dass der entwickelte Positionsfilter durch die Fusion einer GPS-gestützten Inertialplattform, den Fahrzeugsensoren zur Messung von Gierrate und Raddrehzahlen sowie einer visuellen Spurerkennung in Kombination mit einer hochgenauen Karte der Fahrspurmarkierungen die Anforderungen des autonomen Fahrens auch unter schlechten GPS-Empfangsbedingungen erfüllt. Mit diesem, im Rahmen der Arbeit entwickelten, hoch-genauen Positionsbestimmungssystem konnte erstmalig am 21.10.2009 das autonome Fahren auf der Nürburgring Nordschleife nachgewiesen werden.:1. Einleitung 1 1.1. Bedeutung der Positionsbestimmung für moderne Fahrerassistenzsysteme 1 1.2. Kernaufgaben des autonomen Fahrens 3 1.3. Hochgenaue Positionsbestimmung für das autonome Fahren auf Rennstrecken 5 1.4. Zielsetzung der Arbeit und gewählter Lösungsweg 8 2. Grundlagen zur Positionsbestimmung 9 2.1. Allgemeines 9 2.1.1. Definitionen 9 2.1.2. Klassifikationen 9 2.1.3. Koordinatensysteme 11 2.1.4. Transformationen 13 2.2. Ortungsprinzipien 15 2.2.1. Koppelnavigation 16 2.2.2. Inertialnavigation 19 2.2.3. Trilateration/Pseudorange 23 2.2.4. Hyperbelnavigation 24 2.2.5. Triangulation 25 2.2.6. Zellortung 26 2.2.7. Map-Matching 26 2.2.8. Sensordatenfusion mit Erweitertem Kalman-Filter 27 2.3. Existierende Positionsbestimmungssysteme 29 2.3.1. GPS/Glonass/Galileo 29 2.3.2. GPS-gestützte Inertialplattform 33 2.3.3. Mobilfunkortung 34 2.3.4. WLAN-Ortung 34 2.3.5. Tachymeter 35 2.3.6. CAIROS 36 2.4. Sensorik im Fahrzeug 37 2.4.1. RADAR 38 2.4.2. LIDAR 38 2.4.3. Videokamera 39 2.4.4. Raddrehzahlsensor 39 2.4.5. Sensorcluster aus Beschleunigungs- und Gierratensensoren 39 2.4.6. Gierratensensor 40 2.4.7. Beschleunigungssensor 40 2.4.8. Kompass 41 2.5. Positionsbestimmung autonom fahrender Systeme 41 2.5.1. Transportwesen 42 2.5.2. Landwirtschaft 42 2.5.3. Öffentlicher Personennahverkehr 42 2.5.4. Militär 43 2.5.5. Automobilindustrie 43 2.6. Schlussfolgerung und Konkretisierung der Aufgabestellung 45 3. Ausgangssituation 46 3.1. Bewertung einer GPS-gestützten Inertialplattform auf ausgewählten Teststrecken 46 3.2. Rahmenbedingungen der Rennstrecke 49 3.3. Präzisierung der Genauigkeitsanforderungen 50 3.4. Vorauswahl potenzieller Signalquellen 51 3.5. Schlussfolgerung 54 4. Experimentelle Untersuchung und Bewertung potenzieller Signalquellen 56 4.1. GPS/INS 56 4.2. Fahrzeugsensoren und erweitertes Fahrzeugmodell 63 4.3. Digitale Karte 68 4.4. Digitaler Kompass 69 4.5. Videokamera mit Spurerkennung 72 4.6. Laser-Reflexlichtschranke 75 4.7. Servotachymeter 77 4.8. LIDAR-basierte Randbebauungserkennung 81 4.9. Schlussfolgerung und Auswahl geeigneter Signalquellen für die Fusion 84 5. Optimierung eines Ortungsverfahrens mittels visueller Spurerkennung 86 5.1. Hochgenaue digitale Karte für Spurmarkierungen 86 5.1.1. Straßenmodellierung 86 5.1.2. Vermessung der Spurmarkierungen 87 5.1.3. Aufbereitung der Spurmarkierungen 89 5.1.4. Map-Matching 98 5.2. Erweiterte Spurerkennung 99 5.2.1. Prädiktion des Spurverlaufs im Videobild 99 5.2.2. Kantendetektion im Videobild 101 5.2.3. Berechnung der Parameter des Spurmodells 105 5.2.4. Rollwinkelschätzung und Korrektur der erweiterten Bildverarbeitung 107 5.2.5. Vergleich zweier Spurerkennungssysteme 108 5.3. Schlussfolgerung 111 6. Fusion der Signalquellen 112 6.1. Messdatensynchronisierung 112 6.2. Signalplausibilisierung 114 6.3. Sensordatenfusion 117 6.4. Schnittstelle für das Autonome Fahren 120 6.5. Zusammenfassung 124 7. Validierung des Gesamtsystems 125 7.1. Referenzsystem 125 7.2. Experimentelle Ergebnisse auf ausgewählten Teststrecken 126 7.3. Schlussfolgerung 133 8. Zusammenfassung und Ausblick 134 Literaturverzeichnis 136 Abkürzungsverzeichnis 142 Liste der Formelzeichen 143
127

Self-Supervised Representation Learning for Content Based Image Retrieval

Govindarajan, Hariprasath January 2020 (has links)
Automotive technologies and fully autonomous driving have seen a tremendous growth in recent times and have benefitted from extensive deep learning research. State-of-the-art deep learning methods are largely supervised and require labelled data for training. However, the annotation process for image data is time-consuming and costly in terms of human efforts. It is of interest to find informative samples for labelling by Content Based Image Retrieval (CBIR). Generally, a CBIR method takes a query image as input and returns a set of images that are semantically similar to the query image. The image retrieval is achieved by transforming images to feature representations in a latent space, where it is possible to reason about image similarity in terms of image content. In this thesis, a self-supervised method is developed to learn feature representations of road scenes images. The self-supervised method learns feature representations for images by adapting intermediate convolutional features from an existing deep Convolutional Neural Network (CNN). A contrastive approach based on Noise Contrastive Estimation (NCE) is used to train the feature learning model. For complex images like road scenes where mutiple image aspects can occur simultaneously, it is important to embed all the salient image aspects in the feature representation. To achieve this, the output feature representation is obtained as an ensemble of feature embeddings which are learned by focusing on different image aspects. An attention mechanism is incorporated to encourage each ensemble member to focus on different image aspects. For comparison, a self-supervised model without attention is considered and a simple dimensionality reduction approach using SVD is treated as the baseline. The methods are evaluated on nine different evaluation datasets using CBIR performance metrics. The datasets correspond to different image aspects and concern the images at different spatial levels - global, semi-global and local. The feature representations learned by self-supervised methods are shown to perform better than the SVD approach. Taking into account that no labelled data is required for training, learning representations for road scenes images using self-supervised methods appear to be a promising direction. Usage of multiple query images to emphasize a query intention is investigated and a clear improvement in CBIR performance is observed. It is inconclusive whether the addition of an attentive mechanism impacts CBIR performance. The attention method shows some positive signs based on qualitative analysis and also performs better than other methods for one of the evaluation datasets containing a local aspect. This method for learning feature representations is promising but requires further research involving more diverse and complex image aspects.
128

Vehicle Path Prediction Using Recurrent Neural Network

Tekin, Mim Kemal January 2020 (has links)
Vehicle Path Prediction can be used to support Advanced Driver Assistance Systems (ADAS) that covers different technologies like Autonomous Braking System, Adaptive Cruise Control, etc. In this thesis, the vehicle’s future path, parameterized as 5 coordinates along the path, is predicted by using only visual data collected by a front vision sensor. This approach provides cheaper application opportunities without using different sensors. The predictions are done by deep convolutional neural networks (CNN) and the goal of the project is to use recurrent neural networks (RNN) and to investigate the benefits of using reccurence to the task. Two different approaches are used for the models. The first approach is a single-frame approach that makes predictions by using only one image frame as input and predicts the future location points of the car. The single-frame approach is the baseline model. The second approach is a sequential approach that enables the network the usage of historical information of previous image frames in order to predict the vehicle’s future path for the current frame. With this approach, the effect of using recurrence is investigated. Moreover, uncertainty is important for the model reliability. Having a small uncertainty in most of the predictions or having a high uncertainty in unfamiliar situations for the model will increase success of the model. In this project, the uncertainty estimation approach is based on capturing the uncertainty by following a method that allows to work on deep learning models. The uncertainty approach uses the same models that are defined by the first two approaches. Finally, the evaluation of the approaches are done by the mean absolute error and defining two different reasonable tolerance levels for the distance between the prediction path and the ground truth path. The difference between two tolerance levels is that the first one is a strict tolerance level and the the second one is a more relaxed tolerance level. When using strict tolerance level based on distances on test data, 36% of the predictions are accepted for single-frame model, 48% for the sequential model, 27% and 13% are accepted for single-frame and sequential models of uncertainty models. When using relaxed tolerance level on test data, 60% of the predictions are accepted by single-frame model, 67% for the sequential model, 65% and 53% are accepted for single-frame and sequential models of uncertainty models. Furthermore, by using stored information for each sequence, the methods are evaluated for different conditions such as day/night, road type and road cover. As a result, the sequential model outperforms in the majority of the evaluation results.
129

Bewertung innovativer Geschäftsmodelle: Entwicklung eines Simulationsmodells und Anwendung auf die bedarfsabhängige Funktionserweiterung im vernetzten Fahrzeug: Development of a simulation model and application to the ‘Function on Demand’ concept of the connected car

Ziegenfuss, Katharina 26 April 2021 (has links)
Die Bedeutung innovativer Geschäftsmodelle als Bestimmungsfaktor für den Unternehmenserfolg steht weitestgehend außer Frage. Aufgrund der hohen Komplexität von Geschäftsmodellen hat sich jedoch bislang kein praktisch anwendbares Bewertungskonzept etablieren können, welches Geschäftsmodellinnovationen in Hinblick auf deren Erfolgsentwicklung untersucht. Zur Adressierung dieser Problemstellung wird unter Anwendung des systemdynamischen Ansatzes ein Simulationsmodell entwickelt, welches den Wertbeitrag einer Geschäftsmodellinnovation ausweist. Neben dem Kapitalwert als finanzielle Wertgröße des Geschäftsmodells werden ferner der Kundenwert sowie der Wert der unternehmerischen Fähigkeiten als wichtige Wertgrößen explizit gemacht, da sie die zukünftige Leistungs- und Wettbewerbsfähigkeit des Geschäftsmodells determinieren. Damit liefert das Bewertungsmodell einen Ansatz zur ganzheitlichen Geschäftsmodellbewertung, die die Anwendung finanzieller Standardkalkulationen mit der Messbarmachung nicht-finanzieller Erfolgsgrößen kombiniert.:1 Einführung 2 Geschäftsmodelle und Geschäftsmodellbewertung 3 Entwicklungsprozess des systemdynamischen Geschäftsmodells bedarfsabhängiger Funktionserweiterungen 4 Aufbau des systemdynamischen Geschäftsmodells bedarfsabhängiger Funktionserweiterungen 5 Simulation des systemdynamischen Geschäftsmodells bedarfsabhängiger Funktionserweiterungen 6 Schlussbetrachtung / Business model innovations provide powerful levers for creating sustainable competitive advantage and thus have a positive impact on the value of an enterprise. However, due to the complexity of business models, no practically applicable framework, evaluating an innovative business model with regard to its effect on a company’s success, has been established. Hence, a simulation model assessing the value contribution of a business model innovation is developed. Using the mathematical modeling technique ‘System Dynamics’ to frame the value drivers of a business allows for simulation experiments that reveal the effect of the business model’s design on its profitability, therewith guiding policymakers towards better decisions. As a result, the simulation model reports the net present value of a business model. In addition, the success indicators customer lifetime value and the value of the enterprises’ capabilities are identified as important assets that have to be monitored closely as they determine the company’s prospective performance. In combining financial standard calculations with the operationalization of non-financial measures, the simulation model represents a comprehensive approach for business model evaluation.:1 Einführung 2 Geschäftsmodelle und Geschäftsmodellbewertung 3 Entwicklungsprozess des systemdynamischen Geschäftsmodells bedarfsabhängiger Funktionserweiterungen 4 Aufbau des systemdynamischen Geschäftsmodells bedarfsabhängiger Funktionserweiterungen 5 Simulation des systemdynamischen Geschäftsmodells bedarfsabhängiger Funktionserweiterungen 6 Schlussbetrachtung
130

Improving Image Classification using Domain Adaptation for Autonomous Driving : A Master Thesis in Collaboration with Scania / Förbättring av Bildklassificering med hjälp av Domain Adaptation för Sjävkörande Fordon : Ett examensarbete i samarbete med Scania

Westlund, Mikael January 2023 (has links)
Autonomous driving is a rapidly changing industry and has recently become a heavily focused research topic for vehicle producing companies and research organizations. These autonomous vehicles are typically equipped with sensors such as Light Detection and Radar (LiDAR) in order to perceive their surroundings. The problem of detecting and classifying surrounding objects from the sensor data can be solved using different types of algorithms. Recently, machine learning solutions have been investigated. One problem with the machine learning approach is that the models usually require a substantial amount of labeled data, and labeling LiDAR data is a time-consuming process. A promising solution to this problem is utilizing Domain Adaptation (DA) methods. The DA methods can use labeled camera data, which are easier to label, in conjunction with unlabeled LiDAR data to improve the performance of machine learning models on LiDAR data. This thesis investigates and compares different DA methods that can be used for classification of LiDAR data. In this thesis, two image classification datasets with data of humans and vehicles were created. One dataset contains camera images, and the other dataset contains LiDAR intensity images. The datasets were used to train and test three methods: (1) a baseline method, which simply uses labeled camera images to train a model. (2) Correlation Alignment (CORAL), a DA method that aligns the covariance of camera features towards LiDAR features. (3) Deep Adaptation Network (DAN), a DA method that includes a maximum mean discrepancy computation between camera and LiDAR features within the objective function of the model. These methods were then evaluated based on the resulting confusion matrices, accuracy, recall, precision and F1-score on LiDAR data. The results showed that DAN was the best out of the three methods, reaching an accuracy of 87% while the baseline and CORAL only measured at 65% and 73%, respectively. The strong performance of DAN showed that there is potential for using DA methods within the field of autonomous vehicles. / Industrin för självkörande fordon är snabbt förändlig och har under de senaste åren fått ett enormt fokus från biltillverkare och forskningsorganisationer. De självkörande fordonen är oftast utrustade med sensorer som Light Detection and Radar (LiDAR) för att hjälpa fordonen förstå omgivningen. Klassificering och identifiering av omgivande objekt är ett problem som kan lösas med hjälp av olika slags algoritmer. Nyligen har lösningar som utnyttjar maskininlärning undersökts. Ett problem med dessa lösningar är att modellerna oftast kräver en enorm mängd annoterad data, och att annotera LiDAR-data är en kostsam process. En lösning till detta problem är att utnyttja metoder inom Domain Adaptation (DA). DA metoder kan utnyttja både annoterad kameradata samt oannoterad LiDAR-data för att förbättra modellernas prestanda på LiDAR-data. Den här avhandlingen undersöker och jämför olika metoder inom DA som kan användas för att klassificera LiDAR-data. I det här arbetet skapades två dataset som består av data från människor och fordon. Det ena datasettet innehöll kamerabilder och det andra innehöll LiDAR-intensitetsbilder. Dessa dataset användes för att träna och testa tre olika metoder: (1) en baselinemetod, som endast använde annoterade kamerabilder för att träna en modell. (2) Correlation Alignment (CORAL), en metod inom DA som justerar kovariansen hos kamerafeatures mot kovariansen hos LiDAR-features. (3) Deep Adaptation Network (DAN), en metod inom DA som lägger till en uträkning av maximum mean discrepancy mellan kamerafeatures och LiDAR-features i modellens optimeringskriterie. Metoderna bedömdes sedan beroende på deras förvirringsmatriser, träffsäkerhet, precision, täckning och F1-träffsäkerhet på LiDAR-data. Resultaten avslöjade att DAN presterade bäst av de tre metoderna och uppnåde 87% träffsäkerhet medan baselinemetoden och CORAL bara uppnådde 65% respektive 73%. DANs imponerande prestation visade att det finns potential för att använda metoder inom DA för självkörande fordon.

Page generated in 0.0574 seconds