• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 448
  • 42
  • 12
  • 9
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 549
  • 549
  • 460
  • 451
  • 449
  • 447
  • 445
  • 441
  • 441
  • 154
  • 100
  • 83
  • 82
  • 74
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Optimal Optimizer Hyper-Parameters for 2D to 3D Reconstruction

Teki, Sai Ajith January 2021 (has links)
2D to 3D reconstruction is an ill-posed problem in the field of Autonomous Robot Navigation. Many practitioners are tend to utilize the enormous success of Deep Learning techniques like CNN, ANN etc to solve tasks related to this 2D to 3D reconstruction. Generally, every deep learning model involves implementation of different optimizers related to the tasks to lower the possible negativity in its results and selection of hyper parameter values for these optimizers during the process of training the model with required dataset.Selection of this optimizer hyper-parameters requires in-depth knowledge and trials and errors. So proposing optimal hyper parameters for optimizers results in no waste in computational resources and time.Hence solution for the selected task cab found easily. The main objective of this research is to propose optimal hyper parameter values of various deep learning optimizers related to 2D to 3D reconstruction and proposing best optimizer among them in terms of computational time and resources To achieve the goal of this study two research methods are used in our work. The first one is a Systematic Literature Review; whose main goal is to reveal the widely selected and used optimizers for 2D to 3D reconstruction model using 3D Deep Learning techniques.The second, an experimental methodology is deployed, whose main goal is to propose the optimal hyper parameter values for respective optimizers like Adam, SGD+Momentum, Adagrad, Adadelta and Adamax which are used in 3D reconstruction models. In case of the computational time, Adamax optimizer outperformed all other optimizers used with training time (1970min), testing time (3360 min), evaluation-1 (16 min) and evaluation-2 (14 min).In case of Average Point cloud points, Adamax outperformed all other optimizers used with Mean value of 28451.04.In case of pred->GT and GT->pred values , Adamax optimizer outperformed all other optimizers with mean values of 4.742 and 4.600 respectively. Point Cloud Images with respective dense cloud points are obtained as results of our experiment.From the above results,Adamax optimizer is proved to be best in terms of visualization of Point Cloud images with optimal hyper parameter values as below:Epochs : 1000    Learning Rate : 1e-2    Chunk size : 32    Batch size : 32.  In this study,'Adamax' optimizer with optimal hyper para meter values and better Point Cloud Image is proven to be the best optimizer that can be used in a 2D to 3D reconstruction related task that deals with Point Cloud images
342

3D Instance Segmentation of Cluttered Scenes : A Comparative Study of 3D Data Representations

Konradsson, Albin, Bohman, Gustav January 2021 (has links)
This thesis provides a comparison between instance segmentation methods using point clouds and depth images. Specifically, their performance on cluttered scenes of irregular objects in an industrial environment is investigated. Recent work by Wang et al. [1] has suggested potential benefits of a point cloud representation when performing deep learning on data from 3D cameras. However, little work has been done to enable quantifiable comparisons between methods based on different representations, particularly on industrial data. Generating synthetic data provides accurate grayscale, depth map, and point cloud representations for a large number of scenes and can thus be used to compare methods regardless of datatype. The datasets in this work are created using a tool provided by SICK. They simulate postal packages on a conveyor belt scanned by a LiDAR, closely resembling a common industry application. Two datasets are generated. One dataset has low complexity, containing only boxes.The other has higher complexity, containing a combination of boxes and multiple types of irregularly shaped parcels. State-of-the-art instance segmentation methods are selected based on their performance on existing benchmarks. We chose PointGroup by Jiang et al. [2], which uses point clouds, and Mask R-CNN by He et al. [3], which uses images. The results support that there may be benefits of using a point cloud representation over depth images. PointGroup performs better in terms of the chosen metric on both datasets. On low complexity scenes, the inference times are similar between the two methods tested. However, on higher complexity scenes, MaskR-CNN is significantly faster.
343

Eliminace diskontinuity dodávky elektrické energie z obnovitelných zdrojů / Elimination of Discontinuity Supply of Electric Energy from Renewable Energy Sources

Radil, Lukáš January 2013 (has links)
Doctoral thesis deals with domain of electric energy storage. It seeks to define the methods of accumulation, which can be used in industrial applications and define the conditions for the use of storage systems in electric power systems with extended penetration of renewable energy sources. In the context of current developments in this field is analyzed detail one of the perspective storage systems - Vanadium Redox Battery (VRB). One of the outcomes of this work is economic and energy analysis of storage systems, which are conceived with a disproportion between production and consumption of energy. The work was supported by the Centre for Research and Utilization of Renewable Energy (CVVOZE) no. CZ.1.05/2.1.00/01.0014 and research project no. FEKT S-11-9.
344

Improving Situational Awareness in Aviation: Robust Vision-Based Detection of Hazardous Objects

Levin, Alexandra, Vidimlic, Najda January 2020 (has links)
Enhanced vision and object detection could be useful in the aviation domain in situations of bad weather or cluttered environments. In particular, enhanced vision and object detection could improve situational awareness and aid the pilot in environment interpretation and detection of hazardous objects. The fundamental concept of object detection is to interpret what objects are present in an image with the aid of a prediction model or other feature extraction techniques. Constructing a comprehensive data set that can describe the operational environment and be robust for weather and lighting conditions is vital if the object detector is to be utilised in the avionics domain. Evaluating the accuracy and robustness of the constructed data set is crucial. Since erroneous detection, referring to the object detection algorithm failing to detect a potentially hazardous object or falsely detecting an object, is a major safety issue. Bayesian uncertainty estimations are evaluated to examine if they can be utilised to detect miss-classifications, enabling the use of a Bayesian Neural Network with the object detector to identify an erroneous detection. The object detector Faster RCNN with ResNet-50-FPN was utilised using the development framework Detectron2; the accuracy of the object detection algorithm was evaluated based on obtained MS-COCO metrics. The setup achieved a 50.327 % AP@[IoU=.5:.95] score. With an 18.1 % decrease when exposed to weather and lighting conditions. By inducing artificial artefacts and augmentations of luminance, motion, and weather to the images of the training set, the AP@[IoU=.5:.95] score increased by 15.6 %. The inducement improved the robustness necessary to maintain the accuracy when exposed to variations of environmental conditions, which resulted in just a 2.6 % decrease from the initial accuracy. To fully conclude that the augmentations provide the necessary robustness for variations in environmental conditions, the model needs to be subjected to actual image representations of the operational environment with different weather and lighting phenomena. Bayesian uncertainty estimations show great promise in providing additional information to interpret objects in the operational environment correctly. Further research is needed to conclude if uncertainty estimations can provide necessary information to detect erroneous predictions.
345

Image-to-Image Translation for Improvement of Synthetic Thermal Infrared Training Data Using Generative Adversarial Networks

Hamrell, Hanna January 2021 (has links)
Training data is an essential ingredient within supervised learning, yet time con-suming, expensive and for some applications impossible to retrieve. Thus it isof interest to use synthetic training data. However, the domain shift of syntheticdata makes it challenging to obtain good results when used as training data fordeep learning models. It is therefore of interest to refine synthetic data, e.g. using image-to-image translation, to improve results. The aim of this work is to compare different methods to do image-to-image translation of synthetic training data of thermal IR-images using GANs. Translation is done both using synthetic thermal IR-images alone, as well as including pixelwise depth and/or semantic information. To evaluate, a new measure based on the Frechét Inception Distance, adapted to work for thermal IR-images is proposed. The results show that the model trained using IR-images alone translates the generated images closest to the domain of authentic thermal IR-images. The training where IR-images are complemented by corresponding pixelwise depth data performs second best. However, given more training time, inclusion of depth data has the potential to outperform training withirdata alone. This gives a valuable insight on how to best translate images from the domain of synthetic IR-images to that of authentic IR-images, which is vital for quick and low cost generation of training data for deep learning models.
346

Electric Hydrostatic Actuation - modular building blocks for industrial applications

Helbig, Achim, Boes, Christoph January 2016 (has links)
Electro Hydrostatic Actuators (EHA) are emerging as a viable option for industrial machine builders as the design combines the best of both electro-mechanical and electro-hydraulic technologies. The EHA is a highly integrated, compact alternative to traditional hydraulic solutions. Automation engineers moving toward electro-mechanical actuation in pursuit of energy efficiency and environmental cleanliness, will find an EHA an attractive option for high force density actuators. This paper will address the factors to consider when assessing an industrial machine’s application suitability for this latest innovation in actuation. It describes principal base circuits, a concept for EHA building blocks and a realized pilot application as well as challenges on actuator and components level.
347

Development of machine learning models for object identification of parasite eggs using microscopy

Larsson, Joel, Hedberg, Rasmus January 2020 (has links)
Over one billion people in developing countries are afflicted by parasitic infections caused by soil-transmitted helminths. These infections are treatable with cheap and safe medicine that is widely available. However, diagnosis of these infections has proven to be a bottleneck by the fact that it is time-consuming, requires expensive equipment and trained personnel to be consistent and accurate. This study aimed to investigate the viability and performance of five machine learning models and a 'modular neural network' approach to localize and classify the following parasite eggs in microscopic images: Ascaris lumbricoides, Trichuris trichuria, Hookworm and Schistosoma mansoni. These models were implemented and evaluated on the Nvidia Jetson AGX Xavier to establish that they fulfilled the specifications of 95\% specificity and sensitivity, but also a speed requirement of 40000 images per 24 hours. The results show that R-FCN ResNet101 was the best model produced in this study, which performed the best on average. However, it did not fulfill the specifications entirely but is still considered a success due to being an improvement to the current implementation at Etteplan. Evaluation of the modular neural network approach would require further investigation to verify the performance of the system, but the results indicate it could be a possible improvement to the off-the-shelf machine learning models. To conclude, the study showed that the data and data infrastructure provided by Etteplan has proven to be a very powerful tool in training machine learning models to classify and localize parasite eggs in stool samples. However, expansion of the data to reduce the imbalance between the representations of the classes but also include more patient information could improve the training and evaluation process of the models.
348

Comparing CNN methods for detection and tracking of ships in satellite images / Jämförelse av CNN-baserad machine learning för detektion och spårning av fartyg i satellitbilder

Torén, Rickard January 2020 (has links)
Knowing where ships are located is a key factor to support safe maritime transports, harbor management as well as preventing accidents and illegal activities at sea. Present international solutions for geopositioning in the maritime domain exist such as the Automatic Identification System (AIS). However, AIS requires the ships to constantly transmit their location. Real time imaginary based on geostationary satellites has recently been proposed to complement the existing AIS system making locating and tracking more robust. This thesis investigated and compared two machine learning image analysis approaches – Faster R-CNN and SSD with FPN – for detection and tracking of ships in satellite images. Faster R-CNN is a two stage model which first proposes regions of interest followed by detection based on the proposals. SSD is a one stage model which directly detects objects with the additional FPN for better detection of objects covering few pixels. The MAritime SATellite Imagery dataset (MASATI) was used for training and evaluation of the candidate models with 5600 images taken from a wide variety of locations. The TensorFlow Object Detection API was used for the implementation of the two models. The results for detection show that Faster R-CNN achieved a 30.3% mean Average Precision (mAP) while SSD with FPN achieved only 0.0005% mAP on the unseen test part of the dataset. This study concluded that Faster R-CNN is a candidate for identifying and tracking ships in satellite images. SSD with FPN seems less suitable for this task. It is also concluded that the amount of training and choice of hyper-parameters impacted the results.
349

Path Planning and Path Following for an Autonomous GPR Survey Robot

Meedendorp, Maurice January 2022 (has links)
Ground Penetrating Radar (GPR) is a tool for mapping the subsurface in a non-invasive way. GPR surveys are currently carried out manually; a time-consuming, tedious and sometimes dangerous task. This report presents the high-level software components for an autonomous unmanned ground vehicle to conduct GPR surveys. The hardware system is a four-wheel drive, skid steering, battery operated vehicle with integrated GPR equipment. Autonomous surveys are conducted using lidar-inertial odometry with robust path planning, path following and obstacle avoidance capabilities. Evaluation shows that the vehicle is able to autonomously execute a planned survey with high accuracy and stops before collisions occur. This system enables high-frequency surveys to monitor the evolution of an area over time, allows one operator to monitor multiple surveys at once, and facilitates future research into novel survey patterns that are difficult to follow manually
350

Evaluation of the CNN Based Architectures on the Problem of Wide Baseline Stereo Matching / Utvärdering av system för stereomatchning som är baserade på neurala nätverk med faltning

Li, Vladimir January 2016 (has links)
Three-dimensional information is often used in robotics and 3D-mapping. There exist several ways to obtain a three-dimensional map. However, the time of flight used in the laser scanners or the structured light utilized by Kinect-like sensors sometimes are not sufficient. In this thesis, we investigate two CNN based stereo matching methods for obtaining 3D-information from a grayscaled pair of rectified images.While the state-of-the-art stereo matching method utilize a Siamese architecture, in this project a two-channel and a two stream network are trained in an attempt to outperform the state-of-the-art. A set of experiments were performed to achieve optimal hyperparameters. By changing one parameter at the time, the networks with architectures mentioned above are trained. After a completed training the networks are evaluated with two criteria, the error rate, and the runtime.Due to time limitations, we were not able to find optimal learning parameters. However, by using settings from [17] we train a two-channel network that performed almost on the same level as the state-of-the-art. The error rate on the test data for our best architecture is 2.64% while the error rate for the state-of-the-art Siamese network is 2.62%. We were not able to achieve better performance than the state-of-the-art, but we believe that it is possible to reduce the error rate further. On the other hand, the state-of-the-art Siamese stereo matching network is more efficient and faster during the disparity estimation. Therefore, if the time efficiency is prioritized, the Siamese based network should be considered.

Page generated in 0.0644 seconds