• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 12
  • 12
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 106
  • 28
  • 19
  • 17
  • 16
  • 15
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Modelling the evolution of pulsar wind nebulae / Michael Johannes Vorster

Vorster, Michael Johannes January 2014 (has links)
This study focusses on modelling important aspects of the evolution of pulsar wind nebulae using two different approaches. The first uses a hydrodynamic model to simulate the morphological evolution of a spherically-symmetric composite supernova remnant that is expanding into a homogeneous interstellar medium. In order to extend this model, a magnetic field is included in a kinematic fashion, implying that the reaction of the fluid on the magnetic field is taken into account, while neglecting any counter-reaction of the field on the fluid. This approach is valid provided that the ratio of electromagnetic to particle energy in the nebula is small, or equivalently, for a large plasma β environment. This model therefore allows one to not only calculate the evolution of the convection velocity but also, for example, the evolution of the average magnetic field. The second part of this study focusses on calculating the evolution of the energy spectra of the particles in the nebula using a number of particle evolution models. The first of these is a spatially independent temporal evolution model, similar to the models that can be found in the literature. While spatially independent models are useful, a large part of this study is devoted to developing spatially dependent models based on the Fokker-Planck transport equation. Two such models are developed, the first being a spherically-symmetric model that includes the processes of convection, diffusion, adiabatic losses, as well as the non-thermal energy loss processes of synchrotron radiation and inverse Compton scattering. As the magnetic field geometry can lead to the additional transport process of drift, the previous model is extended to an axisymmetric geometry, thereby allowing one to also include this process. / PhD (Space Physics), North-West University, Potchefstroom Campus, 2014
102

Effets de perturbations magnétiques sur la dynamique de la barrière de transport dans un Tokamak : modélisation et simulations numériques

Solminihac, Florence, de 24 October 2012 (has links)
Dans cette thèse nous étudions l'impact de perturbations magnétiques résonnantes sur la dynamique de la barrière de transport dans un tokamak. Pour cela nous avons réalisé des simulations numériques tridimensionnelles de turbulence dans le plasma de bord du tokamak. Nos simulations numériques ont reproduit les résultats expérimentaux observés dans différents tokamaks. Dans le régime de confinement amélioré (mode H), la barrière de transport n'est pas stable : elle effectue des oscillations de relaxation, qui partagent des caractéristiques communes avec les "modes localisés au bord'' (Edge Localized Modes, ELMs). Ces ELMs ont à la fois des avantages et des inconvénients. D'un côté, ils permettent d'évacuer les impuretés présentes dans le coe ur du plasma. Mais d'un autre côté, la charge thermique induite sur la paroi pendant un ELM peut endommager les matériaux de première paroi. Pour cette raison, ils doivent être contrôlés. Cette thèse s'inscrit dans le contexte du projet ITER actuellement en construction en France. Sur ITER, le contrôle des ELMs sera indispensable en raison de la quantité d'énergie évacuée. Parmi les différentes façons de contrôler les ELMs, les perturbations magnétiques résonnantes (Resonant Magnetic Perturbations, RMPs) semblent prometteuses. Ces perturbations magnétiques résonnantes sont créées par des bobines externes. Nous nous plaçons dans le cas du tokamak TEXTOR et nous considérons deux configurations pour les bobines externes : dans un premier temps, une perturbation magnétique résonnante comprenant plusieurs harmoniques, qui permet d'avoir une zone stochastique au bord du plasma lorsque les chaînes d'îlots magnétiques se superposent. / In this PhD thesis we study the impact of resonant magnetic perturbations on the transport barrier dynamics in a tokamak. In this goal we have performed turbulence tridimensional numerical simulations in the edge plasma of a tokamak, which reproduced the experimental results observed in different tokamaks. In the improved confinement regime (H mode), the transport barrier is not stable : it does relaxation oscillations, which share common features with the ``Edge Localized Modes'' (ELMs). These ELMs both have advantages and drawbacks. On the one hand, they enable to push away the impurities present in the plasma core. But on the other hand, the thermal load induced on the wall during an ELM can damage the first wall materials. For this reason, they must be controlled. This PhD thesis belongs to the frame of the ITER project, which is today in construction in France. On ITER the ELMs control will be compulsory due to the quantity of energy released. Among the different ways of controlling the ELMs, the resonant magnetic perturbations (RMPs) seem promising. These resonant magnetic perturbations are created by external coils. We consider the TEXTOR tokamak case and we consider two configurations for the external coils : first, a resonant magnetic perturbation with several harmonics, which enables to have a stochastic zone at the plasma edge when the magnetic island chains overlap ; then, a resonant magnetic perturbation with a single harmonic, which therefore creates a single magnetic island chain. In this PhD thesis, we focus on the non-axisymmetric equilibrium created in the plasma by the resonant magnetic perturbation.
103

Modelling the evolution of pulsar wind nebulae / Michael Johannes Vorster

Vorster, Michael Johannes January 2014 (has links)
This study focusses on modelling important aspects of the evolution of pulsar wind nebulae using two different approaches. The first uses a hydrodynamic model to simulate the morphological evolution of a spherically-symmetric composite supernova remnant that is expanding into a homogeneous interstellar medium. In order to extend this model, a magnetic field is included in a kinematic fashion, implying that the reaction of the fluid on the magnetic field is taken into account, while neglecting any counter-reaction of the field on the fluid. This approach is valid provided that the ratio of electromagnetic to particle energy in the nebula is small, or equivalently, for a large plasma β environment. This model therefore allows one to not only calculate the evolution of the convection velocity but also, for example, the evolution of the average magnetic field. The second part of this study focusses on calculating the evolution of the energy spectra of the particles in the nebula using a number of particle evolution models. The first of these is a spatially independent temporal evolution model, similar to the models that can be found in the literature. While spatially independent models are useful, a large part of this study is devoted to developing spatially dependent models based on the Fokker-Planck transport equation. Two such models are developed, the first being a spherically-symmetric model that includes the processes of convection, diffusion, adiabatic losses, as well as the non-thermal energy loss processes of synchrotron radiation and inverse Compton scattering. As the magnetic field geometry can lead to the additional transport process of drift, the previous model is extended to an axisymmetric geometry, thereby allowing one to also include this process. / PhD (Space Physics), North-West University, Potchefstroom Campus, 2014
104

A Study of Slow Modes in Keplerian Discs

Gulati, Mamta January 2014 (has links) (PDF)
A rich variety of discs are found orbiting massive bodies in the universe. These could be accretion discs composed of gas around stellar mass compact objects fueling micro-quasar activity; protoplanetary discs, mainly composed of dust and gas, are the progenitors for planet formation; accretion discs composed of stars and gas around super-massive black holes at the centers of galaxies fueling the active galactic nuclei activity; discs in spiral galaxies; and many more. Structural and kinematic properties of these discs in several astrophysical systems are correlated to the global properties; for example, over a sample of thousands of galaxies, a correlation has been found between lopsidedness, black hole growth, and the presence of young stellar populations in the centers of galaxies. Galaxy formation and evolution of the central BH are some of the contexts in which such correlations become important. Studying the dynamics of these discs helps to explain their structural properties and is thus of paramount importance. In most astrophysical discs(a notable exception being the stellar discs in spiral galaxies),the dynamics are usually dominated by the gravity of the central object, and is thus nearly Keplerian. However, there is a small contribution to the total force experienced by the disc due to the disc material. Discs mentioned above differ from each other due to different underlying force that dominates the non-Keplerian dynamics of these discs. Two important numbers which are useful in describing physical properties of any disc structure in astrophysics are: (1) Mach number M , and(2) Toomre Q parameter. If thermal pressure gradient and/or random motion dominate the non-Keplerian forces, then M « Q, and in the case when the self-gravity of the disc is more important then Particles constituting the disc orbit under Keplerian potential due to central object, plus the small contribution from the non-Keplerian potential due to disc self-gravity, or the thermal pressure gradient. For a Keplerian potential, the radial and azimuthal frequencies are in 1 : 1 ratio w.r.t. each other and hence there is no precession in the orbits. In case of nearly Keplerian potential(when non-Keplerian contributions are small), the orbits precess at a rate proportional to the non-Keplerian forces. It is this non-zero but small precession that allows the existence of modes whose frequencies are proportional to the precession rate. These modes are referred to as slow modes (Tremaine 2001). Such modes are likely to be the only large-scale or long-wavelength modes. The damping they suffer due to viscosity, collisions, Landau damping, or other dissipative processes is also relatively less. Hence, these modes can dominate the overall appearance of discs. In this thesis we intend to study slow modes for nearly Keplerian discs. Slow modes innear-Kepleriandiscscantobethereasonforvariousnon-axisymmetricfeatures observed in many systems: 1 Galactic discs: Of the few galaxies for which the observations of galactic nuclei exist, two galaxies: NGC4486B(an elliptical galaxy) andM31(spiral galaxy), show an unusual double-peak distribution of stars at their centers. In order to explain such distributions, Tremaine in 1995 proposed an eccentric disc model for M31; this model was then further explored by many authors. In addition, lopsidedness is observed in many galaxies on larger scales, and such asymmetries need to be explained via robust modeling of galactic discs. 2 Debris disc: Many of the observed discs show non-axisymmetric structures, such as lopsided distribution in brightness of scattered light, warp, and clumps in the disc around β Pictoris; spiral structure inHD141569A,etc. Most of these features have been attributed to the presence of planets, and in some cases planets have also been detected. However, Jalali & Tremaine(2012)proposed that most of these structures can be formed also due to slow (m =1 or 2) modes. 3 Accretion Discs around stellar mass binaries have also been found to be asymmetric. One plausible reason for this asymmetry can be m =1slowmodes in these systems. Slow modes are studied in detail in this thesis. The main approaches that we have used, and the major conclusions from this work are as follows: Slow pressure modes in thin accretion disc Earlier work on slow modes assumed that the self-gravity of the disc dominates the pressure gradient in the discs. However, this assumption is not valid for thin and hot accretion discs around stellar mass compact objects. We begin our study of slow modes with the analysis of modes in thin accretion discs around stellar mass compact objects. First, the WKB analysis is used to prove the existence of these modes. Next, we formulate the eigenvalue equation for the slow modes, which turns out to be in the Sturm-Liouville form; thus all the eigenvalues are real. Real eigenvalues imply that the disc is stable to these perturbations. We also discuss the possible excitation mechanisms for these modes; for instance, excitation due to the stream of matter from the secondary star that feeds the accretion disc, or through the action of viscous forces. Slow modes in self-gravitating, zero-pressure fluid disc We next generalize the study of slow m = 1 modes for a single self-gravitating disc of Tremaine(2001) to a system of two self-gravitating counter–rotating, zero-pressure fluid discs, where the disc particles interact via softened-gravity. Counter– rotating streams of matter are susceptible to various instabilities. In particular, Touma(2002)found unstable modes in counter–rotating ,nearly Keplerian systems. These modes were calculated analytically for a two-ring system, and numerically for discs modeled assuming a multiple–ring system. Motivated by this, the corresponding problem for continuous discs was studied by Sridhar & Saini(2010),who proposed a simple model, with dynamics that could be studied largely analytically in the local WKB approximation. Their work, however, had certain limitations; they could construct eigenmodes only for η =0&12, where η is the mass fraction in the retrograde disc. They could only calculate eigenvalues but not the eigen functions. To overcome the above mentioned limitations, we formulate and analyze the full eigenvalue problem to understand the systematic behaviour of such systems. Our general conclusions are as follows 1 The system is stable for m = 1 perturbations in the case of no-counter rotation. 2. For other values of mass fraction , the eigenvalues are generally complex, and the discs are unstable. For η =12,theeigenvalues are imaginary, giving purely growing modes. 2 The pattern speed appears to be non-negative for all values of , with the growth(or damping) rate being larger for larger values of pattern speed. 3 Perturbed surface density profile is generally lopsided, with an overall rotation of the patterns as they evolve in time, with the pattern speed given by the real part of the eigenvalue. Local WKB analysis for Keplerian stellar disc We next urn to stellar discs, whose dynamics is richer than softened gravity discs. Jalali & Tremaine(2012)derived the dispersion relation for short wavelength slow modes for a single disc with Schwarzschild distribution function. In contrast to the softened gravity discs(which have slow modes only for m = 1), stellar discs permit slow modes for m 1. The dispersion relation derived by Jalali & Tremaine makes it evident that all m 1 slow modes are neutrally stable. We study slow modes for the case of two counter–rotating discs, each described by Schwarzschild distribution function, and derive the dispersion relation for slow m 1 modes in the local WKB limit and study the nature of the instabilities. One of the important applications of the dispersion relation derived in this chapter is the stability analysis of the modes. For fluid discs, it is well known that the stability of m = 0 modes guarantees the stability of higher m modes; and the stability criterion for such discs is the well known Toomre stability criterion. However, this is not the case for collisionless discs. Even if the discs are stable for axisymmetric modes, they can still be unstable for non-axisymmetric modes. The stability of axisymmetric modes is governed by the Toomre stability criterion The non-axisymmetric perturbations were found to be unstable if the mass in the retrograde component of the disc is non-zero. We next solve the dispersion relation using the Bohr-Sommerfeld quantization condition to obtain the eigen-spectrum for a given unperturbed surface density profile and velocity dispersion. We could obtain only the eigenvalues for no counter– rotation η = 0, where η is the mass fraction in the retrograde disc and equal counter–rotation(η =12). All the eigenvalues obtained were real for no counter– rotation, and purely growing/damping for equal counter–rotation. The eigenvalue trends that we get favour detection of high ω and low m modes observationally. We also make a detailed comparison between the eigenvalues for m = 1 modes that we obtain with those obtained after solving the integral eigenvalue problem for the softened gravity discs for no counter–rotation and equal counter–rotation. The match between the eigenvalues are quite good, confirming the assertion that softened gravity discs can be reasonable surrogates for collisionless disc for m =1 modes. Non-local WKB theory for eigenmodes One major limitation of the above method is that eigenfunctions cannot be obtained as directly as in quantum mechanics because the dispersion relation is transcendental in radial wave number . We overcome this difficulty by dropping the assumption of locality of the relationship between perturbed self-gravity and surface density. Using the standard WKB analysis and epicyclic theory, together with the logarithmic-spiral decomposition of surface density and gravitational potential, we formulate an integral equation for determining both WKB eigenvalues and eigenfunctions. The application of integral equation derived is not only restricted to Keplerian disc; it could be used to study eigenmodes in galactic discs where the motion of stars is not dominated by the potential due to a central black hole (however we have not pursued the potential application in this thesis). We first verify that the integral equation derived reduces to the well known WKB dispersion relation under the local approximation. We next specialize to slow modes in Keplerian discs. The following are some of the general conclusions of this work 1 We find that the integral equation for slow modes reduces to a symmetric eigenvalue problem, implying that the eigenvalues are all real, and hence the disc is stable. 2 All the non-singular eigenmodes we obtain are prograde, which implies that the density waves generated will have the same sense of rotation as the disc, albeit with a speed which is compared to the the rotation speed of the disc. 3 Eigenvalue ω decreases as we go from m =1 to 2. In addition, for a given , the number of nodes for m =1 are larger than those for m =2. 4 The fastest pattern speed is a decreasing function of the heat in the disc. Asymmetric features in various types of discs could be due to the presence of slow m =1 or 2 modes. In the case of debris discs, these asymmetric features could also be due to the presence of planets. Features due to the presence of slow modes or due to planets can be distinguished from each other if the observations are made for a long enough time. The double peak nucleus observed in galaxies like M31 and NGC4486B differ from each other: stellar distribution in NGC4486B is symmetric w.r.t. its photocenter in contrast to a lopsided distribution seen in M31. It is more likely that the double peak nucleus in NGC4486B is due to m = 2 mode, rather than m = 1 mode as is the case for M31. NGC4486B being an elliptical galaxy, it is possible that the excitation probability for m =2 mode is higher.
105

Asymptotic Analysis of Models for Geometric Motions

Gavin Ainsley Glenn (17958005) 13 February 2024 (has links)
<p dir="ltr">In Chapter 1, we introduce geometric motions from the general perspective of gradient flows. Here we develop the basic framework in which to pose the two main results of this thesis.</p><p dir="ltr">In Chapter 2, we examine the pinch-off phenomenon for a tubular surface moving by surface diffusion. We prove the existence of a one parameter family of pinching profiles obeying a long wavelength approximation of the dynamics.</p><p dir="ltr">In Chapter 3, we study a diffusion-based numerical scheme for curve shortening flow. We prove that the scheme is one time-step consistent.</p>
106

Transmission, reflection and absorption in Sonic and Phononic Crystals

Cebrecos Ruiz, Alejandro 26 October 2015 (has links)
Tesis por compendio / [EN] Phononic crystals are artificial materials formed by a periodic arrangement of inclusions embedded into a host medium, where each of them can be solid or fluid. By controlling the geometry and the impedance contrast of its constituent materials, one can control the dispersive properties of waves, giving rise to a huge variety of interesting and fundamental phenomena in the context of wave propagation. When a propagating wave encounters a medium with different physical properties it can be transmitted and reflected in lossless media, but also absorbed if dissipation is taken into account. These fundamental phenomena have been classically explained in the context of homogeneous media, but it has been a subject of increasing interest in the context of periodic structures in recent years as well. This thesis is devoted to the study of different effects found in sonic and phononic crystals associated with transmission, reflection and absorption of waves, as well as the development of a technique for the characterization of its dispersive properties, described by the band structure. We start discussing the control of wave propagation in transmission in conservative systems. Specifically, our interest is to show how sonic crystals can modify the spatial dispersion of propagating waves leading to control the diffractive broadening of sound beams. Making use of the spatial dispersion curves extracted from the analysis of the band structure, we first predict zero and negative diffraction of waves at frequencies close to the band-edge, resulting in collimation and focusing of sound beams in and behind a 3D sonic crystal, and later demonstrate it through experimental measurements. The focusing efficiency of a 3D sonic crystal is limited due to the strong scattering inside the crystal, characteristic of the diffraction regime. To overcome this limitation we consider axisymmetric structures working in the long wavelength regime, as a gradient index lens. In this regime, the scattering is strongly reduced and, in an axisymmetric configuration, the symmetry matching with acoustic sources radiating sound beams increase its efficiency dramatically. Moreover, the homogenization theory can be used to model the structure as an effective medium with effective physical properties, allowing the study of the wave front profile in terms of refraction. We will show the model, design and characterization of an efficient focusing device based on these concepts. Consider now a periodic structure in which one of the parameters of the lattice, such as the lattice constant or the filling fraction, gradually changes along the propagation direction. Chirped crystals represent this concept and are used here to demonstrate a novel mechanism of sound wave enhancement based on a phenomenon known as "soft" reflection. The enhancement is related to a progressive slowing down of the wave as it propagates along the material, which is associated with the group velocity of the local dispersion relation at the planes of the crystal. A model based on the coupled mode theory is proposed to predict and interpret this effect. Two different phenomena are observed here when dealing with dissipation in periodic structures. On one hand, when considering the propagation of in-plane sound waves in a periodic array of absorbing layers, an anomalous decrease in the absorption, combined with a simultaneous increase of reflection and transmission at Bragg frequencies is observed, in contrast to the usual decrease of transmission, characteristic in conservative periodic systems at these frequencies. For a similar layered media, backed now by a rigid reflector, out-of-plane waves impinging the structure from a homogeneous medium will increase dramatically the interaction strength. In other words, the time delay of sound waves inside the periodic system will be considerably increased resulting in an enhanced absorption, for a broadband spectral range. / [ES] Los cristales fonónicos son materiales artificiales formados por una disposición periódica de inclusiones en un medio, pudiendo ambos ser de carácter sólido o fluido. Controlando la geometría y el contraste de impedancias entre los materiales constituyentes se pueden controlar las propiedades dispersivas de las ondas. Cuando una onda propagante se encuentra un medio con diferentes propiedades físicas puede ser transmitida y reflejada, en medios sin pérdidas, pero también absorbida, si la disipación es tenida en cuenta. La presente tesis está dedicada al estudio de diferentes efectos presentes en cristales sónicos y fonónicos relacionados con la transmisión, reflexión y absorción de ondas, así como el desarrollo de una técnica para la caracterización de sus propiedades dispersivas, descritas por la estructura de bandas. En primer lugar, se estudia el control de la propagación de ondas en transmisión en sistemas conservativos. Específicamente, nuestro interés se centra en mostrar cómo los cristales sónicos son capaces de modificar la dispersión espacial de las ondas propagantes, dando lugar al control del ensanchamiento de haces de sonido. Haciendo uso de las curvas de dispersión espacial extraídas del análisis de la estructura de bandas, se predice primero la difracción nula y negativa de ondas a frecuencias cercanas al borde de la banda, resultando en la colimación y focalización de haces acústicos en el interior y detrás de un cristal sónico 3D, y posteriormente se demuestra mediante medidas experimentales. La eficiencia de focalización de un cristal sónico 3D está limitada debido a las múltiples reflexiones existentes en el interior del cristal. Para superar esta limitación se consideran estructuras axisimétricas trabajando en el régimen de longitud de onda larga, como lentes de gradiente de índice. En este régimen, las reflexiones internas se reducen fuertemente y, en configuración axisimétrica, la adaptación de simetría con fuentes acústicas radiando haces de sonido incrementa la eficiencia drásticamente. Además, la teoría de homogenización puede ser empleada para modelar la estructura como un medio efectivo con propiedades físicas efectivas, permitiendo el estudio del frente de ondas en términos refractivos. Se mostrará el modelado, diseño y caracterización de un dispositivo de focalización eficiente basado en los conceptos anteriores. Considérese ahora una estructura periódica en la que uno de los parámetros de la red, sea el paso de red o el factor de llenado, cambia gradualmente a lo largo de la dirección de propagación. Los cristales chirp representan este concepto y son empleados aquí para demostrar un mecanismo novedoso de incremento de la intensidad de la onda sonora basado en un fenómeno conocido como reflexión "suave". Este incremento está relacionado con una ralentización progresiva de la onda conforme se propaga a través del material, asociado con la velocidad de grupo de la relación de dispersión local en los planos del cristal. Un modelo basado en la teoría de modos acoplados es propuesto para predecir e interpretar este efecto. Se observan dos fenómenos diferentes al considerar pérdidas en estructuras periódicas. Por un lado, si se considera la propagación de ondas sonoras en un array periódico de capas absorbentes, cuyo frente de ondas es paralelo a los planos del cristal, se produce una reducción anómala en la absorción combinada con un incremento simultáneo de la reflexión y transmisión a las frecuencias de Bragg, de forma contraria a la habitual reducción de la transmisión, característica de sistemas periódicos conservativos a estas frecuencias. En el caso de la misma estructura laminada en la que se cubre uno de sus lados mediante un reflector rígido, la incidencia de ondas sonoras desde un medio homogéneo, cuyo frente de ondas es perpendicular a los planos del cristal, produce un gran incremento de la fuerza de / [CA] Els cristalls fonònics són materials artificials formats per una disposició d'inclusions en un medi, ambdós poden ser sòlids o fluids. Controlant la geometría i el contrast d'impedàncies dels seus materials constituents, és poden controlar les propietats dispersives de les ondes, permetent una gran varietatde fenòmens fonamentals interessants en el context de la propagació d'ones. Quan una ona propagant troba un medi amb pèrdues amb propietats físiques diferents es pot transmetre i reflectir, però també absorbida si la dissipació es té en compte. Aquests fenòmens fonamentals s'han explicat clàssicament en el context de medis homogenis, però també ha sigut un tema de creixent interés en el context d'estructures periòdiques en els últims anys. Aquesta tesi doctoral tracta de l'estudi de diferents efectes en cristalls fonònics i sònics lligats a la transmissió, reflexió i absorció d'ones, així com del desenvolupament d'una tècnica de caracterització de les propietats dispersives, descrites mitjançant la estructura de bandes. En primer lloc, s'estudia el control de la propagació ondulatori en transmissió en sistemes conservatius. Més específicament, el nostre interés és mostrar com els cristalls sonors poden modificar la dispersió espacial d'ones propagants donant lloc al control de l'amplària per difracció dels feixos sonors. Mitjançant les corbes dispersió espacial obtingudes de l'anàlisi de l'estructura de bandes, es prediu, en primer lloc, la difracció d'ones zero i negativa a freqüències próximes al final de banda. El resultat és la collimació i focalització de feixos sonors dins i darrere de cristalls de so. Després es mostra amb mesures experimentals. L'eficiència de focalització d'un cristall de so 3D està limitada per la gran dispersió d'ones dins del cristall, que és característic del règim difractiu. Per a superar aquesta limitació, estructures axisimètriques que treballen en el règim de llargues longituds d'ona, i es comporten com a lents de gradient d'índex. En aquest règim, la dispersió es redueix enormement i, en una configuració axisimètrica, a causa de l'acoblament de la simetría amb les fonts acústiques que radien feixos sonors, l'eficiència de radiació s'incrementa significativament. D'altra banda, la teoria d'homogeneïtzació es pot utilitzar per a modelar, dissenyar i caracteritzar un dispositiu eficient de focalització basat en aquests conceptes. Considerem ara una estructura periòdica en la qual un dels seus paràmetres de xarxa, com ara la constant de xarxa o el factor d'ompliment canvia gradualment al llarg de la direcció de propagació. Els cristalls chirped representen aquest concepte i s'utilitzen ací per a demostrar un mecanisme nou d'intensificació d'ones sonores basat en el fenòmen conegut com a reflexió "suau". La intensificació està relacionada amb la alentiment progressiva de l'ona conforme propaga al llarg del material, que està associada amb la velocitat de grup de la relació de dispersió local en els diferents plànols del cristall. Es proposa un model basat en la teoria de modes acoblats per a predir i interpretar este efecte. Dos fenòmens diferents cal destacar quan es tracta d'estructures periòdiques amb dissipació. Per un costat, al considerar la propagació d'ones sonores en el plànol en un array periòdic de capes absorbents, s'observa una disminució anòmala de l'absorció i es combina amb un augment simultani de reflexió i transmissió en les freqüències de Bragg que contrasta amb la usual disminució de transmissió, característica dels sistemes conservatius a eixes freqüències. Per a un medi similar de capes, amb un reflector rígid darrere, les ones fora del pla incidint l'estructura des de un medi homogeni, augmentaran considerablement la interacció. En altres paraules, el retràs temporal de les ones sonores dins del sistema periòdic augmentarà significativament produint un augmen / Cebrecos Ruiz, A. (2015). Transmission, reflection and absorption in Sonic and Phononic Crystals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56463 / TESIS / Premios Extraordinarios de tesis doctorales / Compendio

Page generated in 0.0381 seconds