221 |
Indexation de bases d'images : évaluation de l'impact émotionnel / Image databases indexing : emotional impact assessingGbehounou, Syntyche 21 November 2014 (has links)
L'objectif de ce travail est de proposer une solution de reconnaissance de l'impact émotionnel des images en se basant sur les techniques utilisées en recherche d'images par le contenu. Nous partons des résultats intéressants de cette architecture pour la tester sur une tâche plus complexe. La tâche consiste à classifier les images en fonction de leurs émotions que nous avons définies "Négative", "Neutre" et "Positive". Les émotions sont liées aussi bien au contenu des images, qu'à notre vécu. On ne pourrait donc pas proposer un système de reconnaissance des émotions performant universel. Nous ne sommes pas sensible aux mêmes choses toute notre vie : certaines différences apparaissent avec l'âge et aussi en fonction du genre. Nous essaierons de nous affranchir de ces inconstances en ayant une évaluation des bases d'images la plus hétérogène possible. Notre première contribution va dans ce sens : nous proposons une base de 350 images très largement évaluée. Durant nos travaux, nous avons étudié l'apport de la saillance visuelle aussi bien pendant les expérimentations subjectives que pendant la classification des images. Les descripteurs, que nous avons choisis, ont été évalués dans leur majorité sur une base consacrée à la recherche d'images par le contenu afin de ne sélectionner que les plus pertinents. Notre approche qui tire les avantages d'une architecture bien codifiée, conduit à des résultats très intéressants aussi bien sur la base que nous avons construite que sur la base IAPS, qui sert de référence dans l'analyse de l'impact émotionnel des images. / The goal of this work is to propose an efficient approach for emotional impact recognition based on CBIR techniques (descriptors, image representation). The main idea relies in classifying images according to their emotion which can be "Negative", "Neutral" or "Positive". Emotion is related to the image content and also to the personnal feelings. To achieve our goal we firstly need a correct assessed image database. Our first contribution is about this aspect. We proposed a set of 350 diversifed images rated by people around the world. Added to our choice to use CBIR methods, we studied the impact of visual saliency for the subjective evaluations and interest region segmentation for classification. The results are really interesting and prove that the CBIR methods are usefull for emotion recognition. The chosen desciptors are complementary and their performance are consistent on the database we have built and on IAPS, reference database for the analysis of the image emotional impact.
|
222 |
Traçage de contenu vidéo : une méthode robuste à l’enregistrement en salle de cinéma / Towards camcorder recording robust video fingerprintingGarboan, Adriana 13 December 2012 (has links)
Composantes sine qua non des contenus multimédias distribués et/ou partagés via un réseau, les techniques de fingerprinting permettent d'identifier tout contenu numérique à l'aide d'une signature (empreinte) de taille réduite, calculée à partir des données d'origine. Cette signature doit être invariante aux transformations du contenu. Pour des vidéos, cela renvoie aussi bien à du filtrage, de la compression, des opérations géométriques (rotation, sélection de sous-région… ) qu'à du sous-échantillonnage spatio-temporel. Dans la pratique, c'est l'enregistrement par caméscope directement dans une salle de projection qui combine de façon non linéaire toutes les transformations pré-citées.Par rapport à l'état de l'art, sous contrainte de robustesse à l'enregistrement en salle de cinéma, trois verrous scientifiques restent à lever : (1) unicité des signatures, (2) appariement mathématique des signatures, (3) scalabilité de la recherche au regard de la dimension de la base de données.La principale contribution de cette thèse est de spécifier, concevoir, implanter et valider TrackART, une nouvelle méthode de traçage des contenus vidéo relevant ces trois défis dans un contexte de traçage de contenus cinématographiques.L'unicité de la signature est obtenue par sélection d'un sous-ensemble de coefficients d'ondelettes, selon un critère statistique de leurs propriétés. La robustesse des signatures aux distorsions lors de l'appariement est garantie par l'introduction d'un test statistique Rho de corrélation. Enfin, la méthode développée est scalable : l'algorithme de localisation met en œuvre une représentation auto-adaptative par sac de mots visuels. TrackART comporte également un mécanisme de synchronisation supplémentaire, capable de corriger automatiquement le jitter introduit par les attaques de désynchronisation variables en temps.La méthode TrackART a été validée dans le cadre d'un partenariat industriel, avec les principaux professionnels de l'industrie cinématographique et avec le concours de la Commission Technique Supérieure de l'Image et du Son. La base de données de référence est constituée de 14 heures de contenu vidéo. La base de données requête correspond à 25 heures de contenu vidéo attaqué, obtenues en appliquant neuf types de distorsion sur le tiers des vidéo de la base de référence.Les performances de la méthode TrackART ont été mesurées objectivement dans un contexte d'enregistrement en salle : la probabilité de fausse alarme est inférieure à 16*10^-6, la probabilité de perte inférieure à 0,041, la précision et le rappel sont égal à 93%. Ces valeurs représentent une avancée par rapport à l'état de l'art qui n'exhibe aucune méthode de traçage robuste à l'enregistrement en salle et valident une première preuve de concept de la méthodologie statistique développée. / Sine qua non component of multimedia content distribution on the Internet, video fingerprinting techniques allow the identification of content based on digital signatures(fingerprints) computed from the content itself. The signatures have to be invariant to content transformations like filtering, compression, geometric modifications, and spatial-temporal sub-sampling/cropping. In practice, all these transformations are non-linearly combined by the live camcorder recording use case.The state-of-the-art limitations for video fingerprinting can be identified at three levels: (1) the uniqueness of the fingerprint is solely dealt with by heuristic procedures; (2) the fingerprinting matching is not constructed on a mathematical ground, thus resulting in lack of robustness to live camcorder recording distortions; (3) very few, if any, full scalable mono-modal methods exist.The main contribution of the present thesis is to specify, design, implement and validate a new video fingerprinting method, TrackART, able to overcome these limitations. In order to ensure a unique and mathematical representation of the video content, the fingerprint is represented by a set of wavelet coefficients. In order to grant the fingerprints robustness to the mundane or malicious distortions which appear practical use-cases, the fingerprint matching is based on a repeated Rho test on correlation. In order to make the method efficient in the case of large scale databases, a localization algorithm based on a bag of visual words representation (Sivic and Zisserman, 2003) is employed. An additional synchronization mechanism able to address the time-variants distortions induced by live camcorder recording was also designed.The TrackART method was validated in industrial partnership with professional players in cinematography special effects (Mikros Image) and with the French Cinematography Authority (CST - Commision Supérieure Technique de l'Image et du Son). The reference video database consists of 14 hours of video content. The query dataset consists in 25 hours of replica content obtained by applying nine types of distortions on a third of the reference video content. The performances of the TrackART method have been objectively assessed in the context of live camcorder recording: the probability of false alarm lower than 16 10-6, the probability of missed detection lower than 0.041, precision and recall equal to 0.93. These results represent an advancement compared to the state of the art which does not exhibit any video fingerprinting method robust to live camcorder recording and validate a first proof of concept for the developed statistical methodology.
|
223 |
Automatic tag correction in videos : an approach based on frequent pattern mining / Correction automatique d’annotations de vidéos : une approche à base de fouille de motifs fréquentsTran, Hoang Tung 17 July 2014 (has links)
Nous présentons dans cette thèse un système de correction automatique d'annotations (tags) fournies par des utilisateurs qui téléversent des vidéos sur des sites de partage de documents multimédia sur Internet. La plupart des systèmes d'annotation automatique existants se servent principalement de l'information textuelle fournie en plus de la vidéo par les utilisateurs et apprennent un grand nombre de "classifieurs" pour étiqueter une nouvelle vidéo. Cependant, les annotations fournies par les utilisateurs sont souvent incomplètes et incorrectes. En effet, un utilisateur peut vouloir augmenter artificiellement le nombre de "vues" d'une vidéo en rajoutant des tags non pertinents. Dans cette thèse, nous limitons l'utilisation de cette information textuelle contestable et nous n'apprenons pas de modèle pour propager des annotations entre vidéos. Nous proposons de comparer directement le contenu visuel des vidéos par différents ensembles d'attributs comme les sacs de mots visuels basés sur des descripteurs SIFT ou des motifs fréquents construits à partir de ces sacs. Nous proposons ensuite une stratégie originale de correction des annotations basées sur la fréquence des annotations des vidéos visuellement proches de la vidéo que nous cherchons à corriger. Nous avons également proposé des stratégies d'évaluation et des jeux de données pour évaluer notre approche. Nos expériences montrent que notre système peut effectivement améliorer la qualité des annotations fournies et que les motifs fréquents construits à partir des sacs de motifs fréquents sont des attributs visuels pertinents / This thesis presents a new system for video auto tagging which aims at correcting the tags provided by users for videos uploaded on the Internet. Most existing auto-tagging systems rely mainly on the textual information and learn a great number of classifiers (on per possible tag) to tag new videos. However, the existing user-provided video annotations are often incorrect and incomplete. Indeed, users uploading videos might often want to rapidly increase their video’s number-of-view by tagging them with popular tags which are irrelevant to the video. They can also forget an obvious tag which might greatly help an indexing process. In this thesis, we limit the use this questionable textual information and do not build a supervised model to perform the tag propagation. We propose to compare directly the visual content of the videos described by different sets of features such as SIFT-based Bag-Of-visual-Words or frequent patterns built from them. We then propose an original tag correction strategy based on the frequency of the tags in the visual neighborhood of the videos. We have also introduced a number of strategies and datasets to evaluate our system. The experiments show that our method can effectively improve the existing tags and that frequent patterns build from Bag-Of-visual-Words are useful to construct accurate visual features
|
224 |
Partial 3D-shape indexing and retrieval / Indexation partielle de modèles 3DEl Khoury, Rachid 22 March 2013 (has links)
Un nombre croissant d’applications graphiques 3D ont un impact sur notre société. Ces applications sont utilisées dans plusieurs domaines allant des produits de divertissement numérique, la conception assistée par ordinateur, aux applications médicales. Dans ce contexte, un moteur de recherche d’objets 3D avec de bonnes performances en résultats et en temps d’exécution devient indispensable. Nous proposons une nouvelle méthode pour l’indexation de modèles 3D basée sur des courbes fermées. Nous proposons ensuite une amélioration de notre méthode pour l’indexation partielle de modèles 3D. Notre approche commence par la définition d’une nouvelle fonction d’application invariante. Notre fonction d’application possède des propriétés importantes : elle est invariante aux transformations rigides et non rigides, elle est insensible au bruit, elle est robuste à de petits changements topologiques et elle ne dépend pas de paramètres. Cependant, dans la littérature, une telle fonction qui respecte toutes ces propriétés n’existe pas. Pour respecter ces propriétés, nous définissons notre fonction basée sur la distance de diffusion et la distance de migration pendulaire. Pour prouver les propriétés de notre fonction, nous calculons le graphe de Reeb de modèles 3D. Pour décrire un modèle 3D complet, en utilisant notre fonction d’application, nous définissons des courbes de niveaux fermées à partir d’un point source détecté automatiquement au centre du modèle 3D. Chaque courbe décrit alors une région du modèle 3D. Ces courbes créent un descripteur invariant à différentes transformations. Pour montrer la robustesse de notre méthode sur différentes classes de modèles 3D dans différentes poses, nous utilisons des objets provenant de SHREC 2012. Nous comparons également notre approche aux méthodes de l’état de l’art à l’aide de la base SHREC 2010. Pour l’indexation partielle de modèles 3D, nous améliorons notre approche en utilisant la technique sacs de mots, construits à partir des courbes fermées extraites, et montrons leurs bonnes performances à l’aide de la base précédente / A growing number of 3D graphic applications have an impact on today’s society. These applications are being used in several domains ranging from digital entertainment, computer aided design, to medical applications. In this context, a 3D object search engine with a good performance in time consuming and results becomes mandatory. We propose a novel approach for 3D-model retrieval based on closed curves. Then we enhance our method to handle partial 3D-model retrieval. Our method starts by the definition of an invariant mapping function. The important properties of a mapping function are its invariance to rigid and non rigid transformations, the correct description of the 3D-model, its insensitivity to noise, its robustness to topology changes, and its independance on parameters. However, current state-of-the-art methods do not respect all these properties. To respect these properties, we define our mapping function based on the diffusion and the commute-time distances. To prove the properties of this function, we compute the Reeb graph of the 3D-models. To describe the whole 3D-model, using our mapping function, we generate indexed closed curves from a source point detected automatically at the center of a 3D-model. Each curve describes a small region of the 3D-model. These curves lead to create an invariant descriptor to different transformations. To show the robustness of our method on various classes of 3D-models with different poses, we use shapes from SHREC 2012. We also compare our approach to existing methods in the state-of-the-art with a dataset from SHREC 2010. For partial 3D-model retrieval, we enhance the proposed method using the Bag-Of-Features built with all the extracted closed curves, and show the accurate performances using the same dataset
|
225 |
Plattformarbeit als neuer Kooperationsmodus der Erwerbsarbeit – eine einkommensteuerrechtliche HerausforderungHeinrichs, Christian 13 October 2021 (has links)
Essenslieferungen, Fahrdienste oder etwa die Erledigung von Kleinstaufträgen sog. „Microjobs“, besonders seit der COVID-19-Pandemie erfolgt diese Arbeit immer häufiger unter Vermittlung digitaler Plattformen. Diese Untersuchung eröffnet den Blick auf eine in der Vergangenheit gänzlich unbekannte Form der Arbeitsorganisation, bei der einer vermeintlichen Autonomie der Plattformarbeiter ein Intermediär gegenübersteht, der seine zentrale Position zur Steuerung und Kontrolle ebendieser Plattformarbeiter nutzt und dennoch das Vorliegen eines Arbeitsverhältnisses in der Regel vehement bestreitet. Die Dissertation arbeitet zunächst die theoretischen Grundlagen und wirtschaftlichen Hintergründe derartiger Plattformarbeit heraus. Im zweiten Schritt erfolgt auf Basis von Fallbeispielen – Clickworker, Deliveroo, Upwork – erstmals eine umfassende steuerrechtliche Einordnung des Phänomens Plattformarbeit. Hierbei werden die wesentlichen Besonderheiten im Vergleich zu tradierten Arbeitsverhältnissen, insbesondere die Steuerung der Plattformarbeiter mittels algorithmusbasierter Methoden der Verhaltensökonomie, und deren Auswirkungen auf die steuerliche Einordnung ausführlich beleuchtet. Es kann nachgewiesen werden, dass abhängig von der Art der zu erledigenden Aufgaben vom Intermediär ein Anreizsystem geschaffen werden muss, welches eine indirekte Steuerung des Plattformarbeiters zum Ziel und den Bezug von Einkünften aus nichtselbständiger Arbeit zur Folge hat. Abschließend werden für die ermittelten Unzulänglichkeiten der tradierten steuerlichen Abgrenzungskriterien Lösungsvorschläge entwickelt, etwa eine Beweislastregelung zu Gunsten der Plattformarbeiter. Auf Grund des Querschnittcharakters des Themas schafft die Arbeit zugleich interessante Ansatzpunkte für andere Rechtsgebiete, beispielsweise das Arbeits- oder Vertragsrecht. Stand des Werkes ist Juli 2020.
|
226 |
Rozpoznání displeje embedded zařízení / Embedded display recognitionNovotný, Václav January 2018 (has links)
This master thesis deals with usage of machine learning methods in computer vision for classification of unknown images. The first part contains research of available machine learning methods, their limitations and also their suitability for this task. The second part describes the processes of creating training and testing gallery. In the practical part, the solution for the problem is proposed and later realised and implemented. Proper testing and evaluation of resulting system is conducted.
|
227 |
Rätt skatt på rätt plats? : En studie av hinder och drivkrafter för implementeringen av den svenska skatten på plastbärkassar / The right tax in the right place? : A study of barriers and drivers for the implementation of the Swedish tax on plastic carrier bagsSjulander, Jennifer January 2021 (has links)
Skatten på engångsplastbärkassar som implementerades i Sverige år 2020 möttes med ideologiskt motstånd. Den forskning som gör gällande skatt på plastbärkassar finns främst i internationell kontext och är fokuserad på konsumenters beteenden och reaktioner. Denna studie gör gällande hur berörda verksamheter och organisationer resonerar kring skattens införande, samt dess resultat. Studien syftar också till att identifiera hinder och drivkrafter för implementeringen. För att undersöka förhållandet användes en explorativ ansats där intervjuer med en variation av berörda verksamheter utgjorde materialet för studien. Resultaten visar på att implementeringen mötts av missnöje av hälften av deltagarna på grund av skattens singulära syfte, samtidigt som den andra hälften anser att tillämpningsområdet var tillfredsställande. De hinder som identifierades var svårigheter att definiera engångs-, respektive flergångskassar, samt bristen på synkronisering eller kombination med andra styrmedel. De drivkrafter som identifierades relaterade till organiseringen och kommunikationen mellan de berörda verksamheterna, till trots förbättringsmöjligheter för dessa aspekter. En av slutsatserna är att styrmedel som detta bör nyttja både ett teknocentriskt perspektiv om plastbärkassens miljö-, och klimatpåverkan, samt ett socioekonomiskt perspektiv utgående från berörda verksamheter och organisationers behov. / The Swedish tax on plastic carrier bags that was implemented in 2020 was initially met with dissatisfaction from the public and stakeholders. Current research investigating the tax on plastic carrier bags was done in other countries and is focused on the reactions and behaviours of consumers. Thus, this study investigates stakeholders’ reasoning around the implementation of the tax as well as its results. Another aim is to identify obstacles and driving forces for the implementation. To do so, an explorative approach in combination with interviews of stakeholders were used. The results show that implementation was met with dissatisfaction by half of the participants in the study, owing to the singular aim of the tax. The other half of participants viewed the tax purpose as satisfactory. The obstacles that were identified was difficulties in distinguishing single-use from multi-use plastic carrier bags, as well as the lack of synchronization or combination with other measures. The driving forces that were identified related to the organization and communication between stakeholder, despite opportunities for improvement. One of the conclusions of the study was that policy measures like this tax should use a technocentric perspective on the environmental impact of the plastic carrier bag, in combination with a socioeconomic perspective on the needs of stakeholders.
|
228 |
Příznaky z videa pro klasifikaci / Video Feature for ClassificationBehúň, Kamil January 2013 (has links)
This thesis compares hand-designed features with features learned by feature learning methods in video classification. The features learned by Principal Component Analysis whitening, Independent subspace analysis and Sparse Autoencoders were tested in a standard Bag of Visual Word classification paradigm replacing hand-designed features (e.g. SIFT, HOG, HOF). The classification performance was measured on Human Motion DataBase and YouTube Action Data Set. Learned features showed better performance than the hand-desined features. The combination of hand-designed features and learned features by Multiple Kernel Learning method showed even better performance, including cases when hand-designed features and learned features achieved not so good performance separately.
|
229 |
Detekce objektů pomocí Kinectu / Object Detection Using KinectŘehánek, Martin January 2012 (has links)
With the release of the Kinect device new possibilities appeared, allowing a simple use of image depth in image processing. The aim of this thesis is to propose a method for object detection and recognition in a depth map. Well known method Bag of Words and a descriptor based on Spin Image method are used for the object recognition. The Spin Image method is one of several existing approaches to depth map which are described in this thesis. Detection of object in picture is ensured by the sliding window technique. That is improved and speeded up by utilization of the depth information.
|
230 |
Lokalizace mobilního robota v prostředí / Localisation of Mobile Robot in the EnvironmentNěmec, Lukáš January 2016 (has links)
This paper addresses the problem of mobile robot localization based on current 2D and 3D data and previous records. Focusing on practical loop detection in the trajectory of a robot. The objective of this work was to evaluate current methods of image processing and depth data for issues of localization in environment. This work uses Bag of Words for 2D data and environment of point cloud with Viewpoint Feature Histogram for 3D data. Designed system was implemented and evaluated.
|
Page generated in 0.0287 seconds