111 |
Harmonic analysis of banach space valued functions in the study of parabolic evolution equations /Portal, Pierre, January 2004 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 125-136) and index. Also available on the Internet.
|
112 |
Optimization and flow invariance via high order tangent conesConstantin, Elena. January 2005 (has links)
Thesis (Ph.D.)--Ohio University, June, 2005. / Title from PDF t.p. Includes bibliographical references (p. 72-74)
|
113 |
Nonlinear evolution equations and optimization problems in Banach spacesLee, Haewon. January 2005 (has links)
Thesis (Ph.D.)--Ohio University, August, 2005. / Title from PDF t.p. Includes bibliographical references (p. 79-93)
|
114 |
Funções holomorfas fracamente continuas em espaços de Banach / Weakly continuous holomorphic functions on Banach spacesBerrios Yana, Sonia Sarita 03 September 2007 (has links)
Orientador: Jorge Tulio Mujica Ascui / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T04:55:28Z (GMT). No. of bitstreams: 1
BerriosYana_SoniaSarita_D.pdf: 951582 bytes, checksum: eb4f2207b2bb049f8b5c1e264d96ec85 (MD5)
Previous issue date: 2007 / Resumo: Sejam E e F espaços de Banach complexos, e seja U um aberto em E. Neste trabalho estudamos os subespaços Hwu(U; F), Hw(U; F), Hwsc(U; F) e HwC(U; F) de H(U; F). Mais especificamente, se U é aberto equilibrado caracterizamos funções destes subespaços em termos de condições de equicontinuidade dos polinômios da série de Taylor. Estudamos sob que condições estes subespaços coincidem, estendendo assim os resultados dados em Aron, Herves e Valdivia [2] ao caso de abertos equilibrados. Se E tem uma base contrátil e incondicional, e U é uma bola aberta em E mostramos que cada função holomorfa f : U 'seta' F que é limitada nos conjuntos fracamente compactos U-limitados é limitada nos conjuntos U-limitados. Consequentemente, Hw(U; F) = Hwu(U; F) / Abstract: Let E and F be complex Banach spaces, and let U be an open set in E. In this work we study the subspaces Hwu(U; F), Hw(U; F), Hwsc(U; F) and HwC(U; F) of H(U; F). More specifically, if U is a balanced open set we characterize functions of these subespaces in terms of equicontinuity conditions of the polynomials in the Taylor series. We study under which conditions these subspaces coincide, and then we extend the results given in Aron, Herves and Valdivia [2] to the case of balanced open sets. If E has a shrinking and unconditional basis, and U is an open ball in E we show that each holomorphic function f : U 'seta' F that is bounded on weakly compact U-bounded sets is bounded on U-bounded sets. Consequently, Hw(U; F) = Hwu(U; F) / Doutorado / Doutor em Matemática
|
115 |
Tipo e cotipo de espaços de Banach e espaços Lp de Banach / Type and cotype of Banach spaces and Lp-spacesFavaro, Vinicius Vieira 25 February 2005 (has links)
Orientador: Mario Carvalho de Matos / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T03:32:54Z (GMT). No. of bitstreams: 1
Favaro_ViniciusVieira_M.pdf: 628930 bytes, checksum: 5fd55816ec18b4b1dbe171a96f69e3ed (MD5)
Previous issue date: 2005 / Resumo: Neste trabalho apresentamos um estudo de dois tópicos, principalmente: a teoria básica de tipo e cotipo e a teoria básica dos espaços Lp. Mostramos como estes dois conceitos se relacionam, mais especificamente mostramos que cada espaço Lr; 1 · r < 1; tem tipo min fr; 2g e cotipo max fr; 2g e que nenhum espaço L1 de dimensão infinita pode ter tipo maior que 1 e cotipo menor que 1. Como alicerce para a teoria de tipo e cotipo, detalhamos um estudo sobre as desigualdades de Khintchine e Kahane. Além disso, devotamos um capitulo ao estudo, num contexto mais geral, da desigualdade de Khintchine e dos conceitos de tipo e cotipo, mostrando que estes conceitos não melhoram em nada a teoria já que são equivalentes aos conceitos tradicionais de tipo e cotipo / Abstract: In this work we study two topics: the basic theory of type and cotype and the Lp-spaces theory. We show that each Lr -space, 1 · r < 1; has type min fr; 2g and cotype max fr; 2g. We also prove that no infinite dimensional L1 -space can have type > 1 and cotype < 1. We detail the study of the Khintchine and Kahane inequalities, needed in order to have full understanding of the type, cotype theory. A chapter is dedicated to the study of
generalizations of the Khintchine inequality (the classical Rademacher functions are replaced by the so called n-Rademacher functions). It is shown that if we use these n-Rademacher functions to define type and cotype, the new definitions are equivalent to the usual ones / Mestrado / Matematica / Mestre em Matemática
|
116 |
The theory of partially ordered normed linear spacesEllis, Alan John January 1964 (has links)
No description available.
|
117 |
Riesz- en Fredholmteorie in Banach-algebrasVermaak, Jacobus Andries 11 September 2014 (has links)
M.Sc. (Mathematics) / Please refer to full text to view abstract
|
118 |
Spaces of operators containing co and/or l ∞ with an application of vector measures.Schulle, Polly Jane 08 1900 (has links)
The Banach spaces L(X, Y), K(X, Y), Lw*(X*, Y), and Kw*(X*, Y) are studied to determine when they contain the classical Banach spaces co or l ∞. The complementation of the Banach space K(X, Y) in L(X, Y) is discussed as well as what impact this complementation has on the embedding of co or l∞ in K(X, Y) or L(X, Y). Results concerning the complementation of the Banach space Kw*(X*, Y) in Lw*(X*, Y) are also explored and how that complementation affects the embedding of co or l ∞ in Kw*(X*, Y) or Lw*(X*, Y). The l p spaces for 1 ≤ p < ∞ are studied to determine when the space of compact operators from one l p space to another contains co. The paper contains a new result which classifies these spaces of operators. Results of Kalton, Feder, and Emmanuele concerning the complementation of K(X, Y) in L(X, Y) are generalized. A new result using vector measures is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and John, and Bator and Lewis as well as a new proof of the fact that l ∞ is prime.
|
119 |
Strong Choquet Topologies on the Closed Linear Subspaces of Banach SpacesFarmer, Matthew Ray 08 1900 (has links)
In the study of Banach spaces, the development of some key properties require studying topologies on the collection of closed convex subsets of the space. The subcollection of closed linear subspaces is studied under the relative slice topology, as well as a class of topologies similar thereto. It is shown that the collection of closed linear subspaces under the slice topology is homeomorphic to the collection of their respective intersections with the closed unit ball, under the natural mapping. It is further shown that this collection under any topology in the aforementioned class of similar topologies is a strong Choquet space. Finally, a collection of category results are developed since strong Choquet spaces are also Baire spaces.
|
120 |
Propriedades dos três espaços na teoria de espaços de Banach / Three space property in the theory of Banach spacesSeveriano, Osmar Rogério Reis, 1990- 26 August 2018 (has links)
Orientador: Jorge Tulio Mujica Ascui / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:14:32Z (GMT). No. of bitstreams: 1
Severiano_OsmarRogerioReis_M.pdf: 981069 bytes, checksum: cf807dcc84e563336dd8ed9933bfcea8 (MD5)
Previous issue date: 2015 / Resumo: Seja Y um subespaço fechado de um espaço de Banach X. Um resultado clássico afirma que se Y e X/Y são separáveis então X é separável. Outro resultado clássico afirma que X é reflexivo sempre que Y e X/Y o são. Motivados por estes resultados diremos que uma propriedade P é uma propriedade dos três espaços se X tem a propriedade P sempre que Y e X/Y tem a propriedade P. Assim, separabilidade e reflexividade são propriedades dos três espaços. O objetivo deste projeto é o estudo de diversas propriedades dos três espaços / Abstract: Let Y a closed subspace of X Banach space. One classic result states that if Y and X/Y are separable then X is separable. Another classic result states that X is reflexive whenever Y and X/Y are. Motivated by these results we will say that a property P is a three space property if X has property P whenever Y and X/Y has property P. Thereby separability and reflexivity are three space properties. The aim of this project is the stydy of various three space property / Mestrado / Matematica / Mestre em Matemática
|
Page generated in 0.0335 seconds