• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 46
  • 26
  • 19
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 417
  • 184
  • 56
  • 41
  • 39
  • 35
  • 31
  • 30
  • 27
  • 26
  • 23
  • 21
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Design of a transmitter for Ultra Wideband Radio / Konstruktion av en sändare till Ultra Wideband Radio

Andersson, Christofer January 2003 (has links)
<p>Ultra Wideband Radio (UWB) is an upcoming alternative for wireless communications. Since the Federal Communication Commission in the USA allowed UWB for unlicensed usage in April 2002, more and more companies have started developing UWB systems. </p><p>The major difference with UWB compared to other RF systems is that UWB sends information with pulses instead of using a carrier wave. The technique is from the nineteenth century and was first developed by Heinrich Hertz (1857-1894), which led to transatlantic communications 1901. </p><p>This Master thesis presents a proposal of a transmitter for Ultra Wideband Radio using multiple bands. The proposed transmitter is implemented on system level in Simulink, Matlab. The frequency generation in the transmitter is also implemented at component level in a 0.13 um IBM process. The thesis begins with an introduction of UWB theory and techniques.</p>
212

Dynamical Impacts of Rotating Convective Asymmetries on Tropical Cyclones

Moon, Yumin 01 January 2008 (has links)
Although a tropical cyclone may conceptually be regarded as an axisymmetric vortex, there is substantial evidence that asymmetric dynamics play an important role. In this thesis, dynamical impacts of rotating convective asymmetries are examined in this thesis. Two types of rotating convective asymmetries are considered: rotating eyewall convective maximum which is located in the core region of the storm and spiral bands which are located outside the core. Both of them can be characterized as rotating asymmetric convective heat sources, and they are superimposed on a balanced, axisymmetric vortex to approximate the effect of rotating eyewall convective maximum and spiral bands on tropical cyclone by using a simple nonhydrostatic three-dimensional, but linear model that is based on vortex anelastic equations. The evolution of rotating convective asymmetric heat sources on a balanced, axisymmetric vortex, which is modeled after tropical cyclones, is investigated to examine angular momentum transport by gravity waves that radiate away from the core region. Results show that gravity waves can transport angular momentum away from a tropical cyclone, but a very small amount, which is several orders of magnitude smaller than the estimate by recent studies. The significantly large difference may largely be due to the difference between two-dimensional and three-dimensional adjustment processes. Assuming that the effects of spiral bands on tropical cyclone wind field are caused by the response to diabatic heating in their convection, rotating asymmetric heat sources are constructed to reflect observations of spiral bands. These heat sources are rotated around a realistic but idealized balanced axisymmetric vortex. Simulation results show that the response of tropical cyclone wind field to idealized spiral band heat sources can successfully capture a number of observed well-known features of spiral band circulation, such as overturning secondary circulation, descending mid-level inflow, and cyclonic tangential acceleration. Comparison to full-physics numerical simulations confirms the validity of this method which provides a simple dynamical framework to better understand the impact of spiral bands in tropical cyclone.
213

High-Speed Downlink Shared Channel in Unlicensed Frequency Bands / HS-DSCH i olicensierade frekvensband

Zetterberg, Kristina January 2004 (has links)
In the standardized air interface for third generation mobile communication systems, WCDMA release 5, a concept called High Speed Downlink Packet Access (HSDPA) is introduced. HSDPA enables faster transmissions from base stations to mobile users by using a shared, high-capacity channel called the High-Speed Downlink Shared Channel (HS-DSCH) that is designed for best effort services. The HS-DSCH is developed for usage in the frequency band licensed for third generation communication systems. As the use of licensed frequency bands is costly it may be interesting to make use of the unlicensed frequency bands at 2.4 GHz and 5 GHz with higher interference and stricter regulations. Using HS- DSCH in unlicensed frequency bands would lead to smaller costs and a new kind of usage of the HS-DSCH. In order to transmit in unlicensed frequency bands, some requirements set up by the public authorities must be followed. This means that the maximum transmit power used by the HS-DSCH must be decreased and, on the 5 GHz frequency band, that features to avoid disturbing radar systems have to be implemented. The HS- DSCH has a bandwidth of 5 MHz. To use the available frequency spectra more efficiently, multiple carriers could be used. Wireless Local Area Networks (WLANs) are the most common way to transfer data in unlicensed frequency bands today. Assessments and simulations of WLAN and the HS-DSCH in unlicensed frequency bands show that WLAN can provide higher bitrates than the HS-DSCH for low loads. HS-DSCH can however provide a larger coverage per base station, and is more bandwidth effective than WLAN. Using a larger bandwidth is necessary for HS-DSCH to compete with WLAN, which uses a bandwidth approximately four times as large as the HS-DSCH bandwidth. The usage of the HS-DSCH in unlicensed frequency bands also has the advantage that the services provided by the third generation communication systems can be accessed easily.
214

Design of a transmitter for Ultra Wideband Radio / Konstruktion av en sändare till Ultra Wideband Radio

Andersson, Christofer January 2003 (has links)
Ultra Wideband Radio (UWB) is an upcoming alternative for wireless communications. Since the Federal Communication Commission in the USA allowed UWB for unlicensed usage in April 2002, more and more companies have started developing UWB systems. The major difference with UWB compared to other RF systems is that UWB sends information with pulses instead of using a carrier wave. The technique is from the nineteenth century and was first developed by Heinrich Hertz (1857-1894), which led to transatlantic communications 1901. This Master thesis presents a proposal of a transmitter for Ultra Wideband Radio using multiple bands. The proposed transmitter is implemented on system level in Simulink, Matlab. The frequency generation in the transmitter is also implemented at component level in a 0.13 um IBM process. The thesis begins with an introduction of UWB theory and techniques.
215

Tremor in Parkinson's Disease: Loading and Trends in Tremor Characteristics

Rahimi, Fariborz 30 September 2010 (has links)
Parkinson's disease (PD) is a neuro-degenerative chronic disorder with cardinal signs of bradykinesia, resting tremor, rigidity, and postural abnormality/instability. Tremor, which is a manifestation of both normal and abnormal activities in the nervous system, can be described as an involuntary and periodic oscillation of any limb. Such an oscillation with a small amplitude, which is barely visible to the naked eye, is present in healthy people. This is called a physiological tremor and is asymptomatic. This tremor is believed to be the result of at least two distinct oscillations. A passive mechanical oscillation that is produced by the irregularities of motor unit firing, and by blood ejection during cardiac systole. The frequency and amplitude of these oscillations are dependent on the mechanical properties of the limb including joint stiffness and limb inertia. There is another component of oscillation that does not respond to elastic or inertial loading, which is called the central component, and is believed to arise from an unknown oscillating neuronal network within the central nervous system. Unlike physiological tremor, pathological tremors are symptomatic and can impair motor performance. Parkinson's disease (PD) tremor is generally manifested at rest, but also occurs during posture or motion. Classical PD rest tremor is known to be a central tremor of 4-6 Hz and peripheral origins have only a minimal role. However, whether or not the same central mechanism remains active during action tremor (including posture and movement) should yet be answered. Contrary to PD rest tremor, reported results on action tremor in the literature are diverse; and the reason for the changes in tremor characteristics in situations other than rest, or generally during muscle activation, is not fully understood. The lack of generality in the results of studies on action tremor, makes the efforts of treatment difficult, and is a barrier for mechanical/engineering approaches of suppressing this tremor. To investigate the role of mechanisms other than classic rest tremor, and possible sub-categories of tremulous PD in yielding diverse results, this study was conducted on twenty PD patients and fourteen healthy age-matched (on average) controls. To evaluate the possible contribution of (enhanced) physiological tremor, the study considered the effect of loading on postural hand tremor in a complete range of 0-100% MVC (Maximum Voluntary Contraction). The study looked at two measures of tremor amplitude and one measure of tremor frequency, and focused on two frequency bands of classic-rest (3.5-6.5 Hz) and physiological (7.5-16.5 Hz) tremors. The study revealed that PD tremor was not uniformly distributed in the three dimensional space, and then focused on the investigation of tremor in the dominant axis, which was the same as direction of loading. It also revealed that dopaminergic medication could significantly affect tremor components only in PD band, compared to the components in the physiological band. The study was an extension to previous studies and yielded similar results for the previously reported range of loading. However, with the extended range of loading, it revealed novel results particularly after separating PD patients into sub-groups. It was hypothesized that the coexistence of physiological mechanism, and considerable difference between sub-types of tremulous PD patients, are responsible for most of the diversity in the previously reported studies. This study showed that for clearer results the sub-groups are inevitable, and that automatic classification (clustering) provided the most separable sub-groups. These sub-groups had distinct trends of load effect on tremor amplitude and frequency. No matter which categorization method was used, at least one sub-group exhibited significantly higher tremor energy compared to the healthy participants not only in the PD band, but also in the physiological band. This meant that, for some sub-groups of PD, the physiological tremor is a very important mechanism and not the same as that of healthy people. The coexistence hypothesis was also affirmed by examining tremor spectrums' peak frequency and magnitude in the two separate bands. The necessity of the separation of tremulous PD patients into sub-groups, and the coexistence of physiological and classic PD tremor mechanisms for some of them are the factor that should be considered in the design of a suppressing device and also in the proposed treatment of action tremor in this population.
216

Effect sizes, signficance tests, and confidence intervals [electronic resource] : assessing the influence and impact of research reporting protocol and practice / by Melinda Rae Hess.

Hess, Melinda Rae. January 2003 (has links)
Includes vita. / Title from PDF of title page. / Document formatted into pages; contains 223 pages. / Thesis (Ph.D.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: This study addresses research reporting practices and protocols by bridging the gap from the theoretical and conceptual debates typically found in the literature with more realistic applications using data from published research. Specifically, the practice of using findings of statistical analysis as the primary, and often only, basis for results and conclusions of research is investigated through computing effect size and confidence intervals and considering how their use might impact the strength of inferences and conclusions reported. Using a sample of published manuscripts from three peer-rviewed journals, central quantitative findings were expressed as dichotomous hypothesis test results, point estimates of effect sizes and confidence intervals. Studies using three different types of statistical analyses were considered for inclusion: t-tests, regression, and Analysis of Variance (ANOVA). / ABSTRACT: The differences in the substantive interpretations of results from these accomplished and published studies were then examined as a function of these different analytical approaches. Both quantitative and qualitative techniques were used to examine the findings. General descriptive statistical techniques were employed to capture the magnitude of studies and analyses that might have different interpretations if althernative methods of reporting findings were used in addition to traditional tests of statistical signficance. Qualitative methods were then used to gain a sense of the impact on the wording used in the research conclusions of these other forms of reporting findings. It was discovered that tests of non-signficant results were more prone to need evidence of effect size than those of significant results. / ABSTRACT: Regardless of tests of signficance, the addition of information from confidence intervals tended to heavily impact the findings resulting from signficance tests. The results were interpreted in terms of improving the reporting practices in applied research. Issues that were noted in this study relevant to the primary focus are discussed in general with implicaitons for future research. Recommendations are made regarding editorial and publishing practices, both for primary researchers and editors. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
217

A cultural analysis of Afro-Caribbean rhythm, strumming, and movement for the North American school steelband

Moses, Lennard V., January 2008 (has links)
Thesis (D.M.A.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 103-106).
218

Microstructural effects on fatigue damage evolution in advanced high strength sheet (AHSS) steels

Godha, Anshul 08 June 2015 (has links)
An understanding of the damage evolution prior to crack initiation in advanced structural materials is of vital importance to the fatigue community in both academia and industry. Features known as the Persistent Slip Bands (PSBs) play an integral role in this damage evolution. Therefore, PSBs have been the focus of a lot of science-based investigations over the years. However, most existing studies in this area are restricted to analysis of PSBs in single crystal face centered cubic (FCC) materials. Moreover, these studies lack a quantitative analysis of the evolution of the fatigue damage (or PSBs) as a function of the material microstructure. This is especially true for relatively modern materials such as the Advanced High Strength Structural (AHSS) steels that are gaining a lot of importance in the automotive sector. Accordingly, the objective of this research is to quantitatively characterize evolution of PSBs in three AHSS steels having different microstructures as a function of number of fatigue cycles and strain amplitude. For this purpose strain controlled interrupted fatigue tests have been performed on two dual phase steels (DP-590 and DP-980) having different relative amounts of tempered martensite and a ferritic high strength low alloy steel (HR-590). Digital image analysis and Stereology have been used for unbiased quantitative characterization of the evolution of global geometry of the PSB colonies as function of number of fatigue cycles and strain amplitude. Evolution of PSB colonies has been couched in terms of variation of PSB colony volume fraction and total surface area unit volume, and total surface area of individual PSBs per unit volume and three-dimensional angular orientation distribution of the PSBs. For this purpose, new stereological techniques have been developed for estimation of the three-dimensional angular orientation distribution. The stereological data reveal that during strain controlled in these AHSS steels, volume fraction of the PSB colonies varies linearly with the their total surface area per unit volume. Detailed analysis of the stereological data leads to a simple geometric model for evolution of the PSB colonies in the three AHSS steels, which accounts for all observed data trends.
219

Topological Properties of Interacting Fermionic Systems

Dos Santos, Luiz Henrique Bravo 17 December 2012 (has links)
This thesis is a study of three categories of problems in fermionic systems for which topology plays an important role: (i) The properties of zero modes arising in systems of fermions interacting with a bosonic background, with a special focus on Majorana modes arising in the superconductor state. We propose a method for counting Majorana modes and we study a mechanism for controlling their number parity in lattice systems, two questions that are of relevance to the protection of quantum bits. (ii) The study of dispersionless bands in two dimensions as a platform for correlated physics, where it is shown the possibility of stabilizing the fractional quantum Hall effect in a flat band with Chern number. (iii) The extension of the hierarchy of quantum Hall fluids to the case of time-reversal symmetric incompressible ground states describing a phase of strongly interacting topological insulators in two dimensions. / Physics
220

Tremor in Parkinson's Disease: Loading and Trends in Tremor Characteristics

Rahimi, Fariborz 30 September 2010 (has links)
Parkinson's disease (PD) is a neuro-degenerative chronic disorder with cardinal signs of bradykinesia, resting tremor, rigidity, and postural abnormality/instability. Tremor, which is a manifestation of both normal and abnormal activities in the nervous system, can be described as an involuntary and periodic oscillation of any limb. Such an oscillation with a small amplitude, which is barely visible to the naked eye, is present in healthy people. This is called a physiological tremor and is asymptomatic. This tremor is believed to be the result of at least two distinct oscillations. A passive mechanical oscillation that is produced by the irregularities of motor unit firing, and by blood ejection during cardiac systole. The frequency and amplitude of these oscillations are dependent on the mechanical properties of the limb including joint stiffness and limb inertia. There is another component of oscillation that does not respond to elastic or inertial loading, which is called the central component, and is believed to arise from an unknown oscillating neuronal network within the central nervous system. Unlike physiological tremor, pathological tremors are symptomatic and can impair motor performance. Parkinson's disease (PD) tremor is generally manifested at rest, but also occurs during posture or motion. Classical PD rest tremor is known to be a central tremor of 4-6 Hz and peripheral origins have only a minimal role. However, whether or not the same central mechanism remains active during action tremor (including posture and movement) should yet be answered. Contrary to PD rest tremor, reported results on action tremor in the literature are diverse; and the reason for the changes in tremor characteristics in situations other than rest, or generally during muscle activation, is not fully understood. The lack of generality in the results of studies on action tremor, makes the efforts of treatment difficult, and is a barrier for mechanical/engineering approaches of suppressing this tremor. To investigate the role of mechanisms other than classic rest tremor, and possible sub-categories of tremulous PD in yielding diverse results, this study was conducted on twenty PD patients and fourteen healthy age-matched (on average) controls. To evaluate the possible contribution of (enhanced) physiological tremor, the study considered the effect of loading on postural hand tremor in a complete range of 0-100% MVC (Maximum Voluntary Contraction). The study looked at two measures of tremor amplitude and one measure of tremor frequency, and focused on two frequency bands of classic-rest (3.5-6.5 Hz) and physiological (7.5-16.5 Hz) tremors. The study revealed that PD tremor was not uniformly distributed in the three dimensional space, and then focused on the investigation of tremor in the dominant axis, which was the same as direction of loading. It also revealed that dopaminergic medication could significantly affect tremor components only in PD band, compared to the components in the physiological band. The study was an extension to previous studies and yielded similar results for the previously reported range of loading. However, with the extended range of loading, it revealed novel results particularly after separating PD patients into sub-groups. It was hypothesized that the coexistence of physiological mechanism, and considerable difference between sub-types of tremulous PD patients, are responsible for most of the diversity in the previously reported studies. This study showed that for clearer results the sub-groups are inevitable, and that automatic classification (clustering) provided the most separable sub-groups. These sub-groups had distinct trends of load effect on tremor amplitude and frequency. No matter which categorization method was used, at least one sub-group exhibited significantly higher tremor energy compared to the healthy participants not only in the PD band, but also in the physiological band. This meant that, for some sub-groups of PD, the physiological tremor is a very important mechanism and not the same as that of healthy people. The coexistence hypothesis was also affirmed by examining tremor spectrums' peak frequency and magnitude in the two separate bands. The necessity of the separation of tremulous PD patients into sub-groups, and the coexistence of physiological and classic PD tremor mechanisms for some of them are the factor that should be considered in the design of a suppressing device and also in the proposed treatment of action tremor in this population.

Page generated in 0.0332 seconds