1 |
Étude des mécanismes aux interfaces électrode/électrolyte d’accumulateurs « bulk tout-solide ». / Study of mechanisms at electrode/electrolyte interfaces of « bulk all-solid-state » batteries.Auvergniot, Jérémie 21 December 2017 (has links)
Les deux décennies écoulées ont connu le formidable essor de l'électronique portable qui a bouleversé notre société, essor rendu possible par l'invention des batteries Li-ion, qui fournissent une densité d'énergie élevée pour un poids et un volume réduits. Nous assistons aujourd'hui à une diversification des besoins en termes de stockage électrochimique de l'énergie, avec le développement de nouvelles applications (énergies renouvelables, transport) dont les contraintes ne sont pas les mêmes. Pour certaines applications, les exigences en termes de sécurité des personnes seront aussi importantes que celles en termes de densité d’énergie et de coût. Par ailleurs, la recherche se tourne de plus en plus vers les batteries Na-ion dont le coût de dépend pas du prix du lithium. En résumé, tel ou tel système de stockage électrochimique sera adapté à telle ou telle application.Le remplacement des électrolytes organiques liquides par des électrolytes solides inorganiques est une solution intéressante pour améliorer la sûreté des batteries, les conducteurs ioniques inorganiques étant non-inflammables, stables à haute température, et supposés plus stables chimiquement et électrochimiquement. L’emploi de ces matériaux dans des batteries « bulk tout-solide » s'accompagne néanmoins de problèmes interfaciaux limitant leurs performances, tels que la perte de contact entre particules aux interfaces, ou encore des problèmes de compatibilité chimique et électrochimique entre les matériaux. L’un des problèmes affectant ce type de batteries est l’interdiffusion d’espèces aux interfaces, accompagnée d'une augmentation d'impédance des batteries au cours du cyclage. Bien que des solutions aient déjà été proposées, comme le revêtement des particules de matière active par une couche de matériau moins réactif, il y a un manque de connaissance des espèces chimiques formées aux interfaces par réaction entre les matériaux, connaissance nécessaire afin d’améliorer les performances de tels systèmes. C'est là que se situait l'objectif de cette thèse: étudier les interactions se produisant aux interfaces électrode-électrolyte au sein de batteries «bulk tout-solide», et identifier les espèces chimiques formées. Le travail a été réalisé entre l’IPREM de Pau et le LRCS de l'Université d'Amiens. Deux électrolytes solides ont été étudiés: l’argyrodite Li6PS5Cl et le NaSICON Na3Zr2Si2PO12. Les matériaux été synthétisés, puis intégrés dans des batteries «bulk tout-solide». Les interfaces ont été caractérisées par spectroscopie photoélectronique à rayonnement X (XPS) et par spectroscopie d’électrons Auger (AES), deux techniques complémentaires, la première permettant l'identification et la quantification des espèces chimiques en extrême surface, la seconde permettant d’obtenir des informations sur leur répartition à l'échelle nanométrique.L’analyse de batteries «bulk tout-solide» basées sur l’électrolyte Na3Zr2Si2PO12 et utilisant le matériau actif Na3V2(PO4)3 a permis mettre en évidence des modifications micromorphologiques au cours du cyclage, accompagnées de phénomènes d’interdiffusion des éléments entre les particules. Les analyses AES conduites sur ce type de batteries nous ont permis de mieux décrire les phénomènes d’autodécharge.Les analyses conduites sur les batteries basées sur l’électrolyte Li6PS5Cl nous ont permis de montrer que cet électrolyte solide présente une bonne stabilité vis à vis du matériau d'électrode négative LTO. En revanche, il présente une réactivité interfaciale avec des matériaux d'électrode positive tels que LCO, NMC, LMO, LFP, ou LiV3O8. Cette réactivité se traduit par la formation d'espèces aux interfaces incluant LiCl, P2Sx , Li2Sn , S0 et des phosphates. En dépit des problèmes de réactivité interfaciale constatés, nous avons pu au cours de cette thèse mettre au point des batteries « tout-solide » basées sur l’électrolyte Li6PS5Cl présentant une bonne rétention de capacité sur 300 cycles lorsqu'elles sont cyclées entre 2,8 et 3,4V. / The last two decades have shown a tremendous spreading of portable electronics, changing our society. This change was made possible by the invention of Li-ion batteries, which provide a high energy density for a low weight and volume. More recently the development of new applications, such as electric vehicles or renewable energies, has led to new needs in terms of electrochemical storage. For some applications, user safety will be as important as cost and energy density. On the other hand, research around Na-ion batteries focuses an increased interest, because they do not depend on lithium cost. Replacing organic liquid electrolytes with inorganic solid electrolytes is an interesting solution to improve the safety of batteries, because inorganic ionic conductors are nonflammable, stable at high temperature, and supposed to be chemically and electrochemically more stable. Using those materials in all-solid-state batteries has however several limiting factors, such as loss of contact between particle at the interfaces during cycling, and also chemical/electrochemical compatibility issues between materials. Another issue with this type of batteries is the interdiffusion of species at interfaces leading to an impedance increase during cycling. Several solutions exist to mitigate those issues, such coating the active material particles with a less reactive inorganic material. However there is a lack of knowledge on the species forming at those interfaces, knowledge which is needed to improve the performances of such systems. Studying those interfacial interactions and characterizing the species formed as those interfaces was the main topic of this Ph.D thesis.This work has been done in collaboration between two laboratories : IPREM (University of Pau - CNRS, France) and LRCS (University of Amiens - CNRS, France). Two solid electrolytes have been studied: the argyrodite Li6PS5Cl and the NaSICON Na3Zr2Si2PO12. Those materials have been synthetized, then integrated in bulk all-solid-state batteries and their interfaces were characterized by X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Those two techniques provide us very complementary information, the first allowing identification and quantification of surface species, the second one giving access to the spatial repartition of elements at a nanometric level.The analysis of bulk all-solid-state batteries based on the electrolyte Na3Zr2Si2PO12 using the active material Na3V2(PO4)3 showed micromorphologic changes during cycling, as well as interdiffusion phenomena between particles. AES analysis also allowed us to describe self-discharge issues.The study of Li6PS5Cl-based batteries highlighted that this solid electrolyte is stable towards the negative electrode active material LTO. It however has interfacial reactivity towards positive electrode active materials such as LCO, NMC, LMO, LFP and LiV3O8. This reactivity leads to the formation of several species such as LiCl, P2Sx , Li2Sn , S0 and phosphates at the interface with Li6PS5Cl. In spite of the encountered interfacial reactivity issues, we managed to build all-solid-state batteries based on Li6PS5Cl showing a good capacity retention over 300 cycles when cycled between 2.8 and 3.4V.
|
2 |
Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 / Structure and ionic mobility in solid electrolyte materials for all-solid-state batteries : case study of Li7-3xAlxLa3Zr2O12 garnet and Li1.15-2xMgxZr1.85Y0.15(PO4)3 NasiconCastillo, Adriana 19 December 2018 (has links)
L’un des enjeux pour le développement des batteries tout-solide est d’augmenter la conductivité ionique des électrolytes solides. Le sujet de la thèse porte sur l’étude de deux types de matériaux d’électrolytes solides inorganiques cristallins: les Grenat Li7- 3xAlxLa3Zr2O12 (LLAZO) et les Nasicon Li1.15- 2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). L’objectif de cette étude est de comprendre dans quelle mesure les propriétés conductrices des matériaux étudiés sont impactées par des modifications structurales générées soit par un procédé de traitement particulier, soit par une modification de la composition chimique, et ce grâce au croisement des données structurales acquises par diffraction des rayons X (DRX) et Résonance Magnétique Nucléaire (RMN) MAS avec des données de dynamique des ions déduites de mesures de RMN en température et de spectroscopie d’impédance électrochimique (SIE).Les poudres ont été synthétisées après optimisation des traitements thermiques par méthode solide-solide ou solgel. La densification des pastilles utilisées pour les mesures de conductivité ionique par SIE a été réalisée par la technique de frittage Spark Plasma Sintering (SPS).Dans le cas des grenats LLAZO, l’originalité de notre travail est d’avoir montré qu’un traitement de frittage par SPS, au-delà de la densification attendue des pastilles, engendre également des modifications structurales qui ont des conséquences directes sur la mobilité des ions lithium dans le matériau et par conséquent sur la conductivité ionique. Une augmentation franche de la dynamique microscopique des ions lithium après frittage par SPS a en effet été observée par des mesures en température de RMN de 7Li et le suivi des constantes de relaxation.La deuxième partie de l’étude constitue un travail exploratoire sur la substitution de Li+ par Mg2+ dans LMZYPO. Nous avons ainsi étudié les propriétés de conduction ionique de ces composés mixtes Li/Mg, en parallèle d’un examen minutieux des phases cristallines formées. Nous avons notamment montré que la présence de Mg2+ favorise la formation des phases β’ (P21/n) et β (Pbna) moins conductrices ce qui explique la diminution de la conductivité ionique avec le taux de substitution de Li+ par Mg2+ observée dans ces matériaux de type Nasicon.Nos travaux soulignent donc l’importance primordiale des effets de structure sur les propriétés de matériaux d’électrolytes solides de type céramique. / One of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials.
|
3 |
Mise en forme de batteries céramique tout solide à base d'oxydesBertrand, Marc 06 1900 (has links)
Les travaux présentés ici concernent la mise en forme de batteries tout solide à base d'oxydes. En particulier, ils se concentrent sur l'électrolyte
et la partie positive de la batterie. Le sujet étant large, il a été choisi de l'aborder par des approches originales. Pour mettre en forme de telles
batteries, l'application d'un traitement thermique à haute température (appelé frittage) sur des composites permet de les densifier et ainsi
d'autoriser le déplacement essentiel des ions lithiums dans toute la cellule. Ces hautes températures posent évidemment des problèmes de
compatibilité entre les matériaux. Face aux nombreux choix d'électrolytes céramiques et de matières actives existantes qui font l'objet de très
nombreuses publications, la première étude a pour but de sélectionner les couples les plus compatibles lors de l'application d'un traitement
thermique. Ces travaux introduisent à la communauté la problématique des contraintes mécaniques liées à la dilatation thermique des
matériaux.
Le nombre de couples restant stable pendant le traitement en température étant restreint, une solution originale a été ensuite été proposée pour
diminuer la température de mise en forme en profitant de la forme vitreuse d'un électrolyte céramique. Un verre devenant relativement fluide
une fois sa température de transition vitreuse atteinte, la densification est facilitée à une température plus basse comparée aux techniques de
frittage usuelles. Le verre étant non conducteur, il doit ensuite être cristallisé pour devenir un électrolyte fonctionnel. La deuxième publication
étudie donc le phénomène de densification et de cristallisation de la forme vitreuse de l'électrolyte Li1.5Al0.5Ge1.5(PO4)3 afin de comprendre
les mécanismes en jeu et leurs impacts sur les propriétés électrochimiques. Enfin la dernière étude concerne la mise en forme de l'électrolyte à
partir de poudre de verre à l'aide du frittage flash. Un prototype de batterie tout solide fonctionnel est ainsi réalisé avec une température de mise
en forme de 570°C contre au moins 650°C dans la littérature, réduisant ainsi les problèmes de dégradation liés aux hautes températures. Cette
nouvelle technique de mise en forme à plus basse température pourra être appliquée à d'autres électrolytes et permettre l'assemblage de
matériaux incompatibles chimiquement à plus haute température. Ceci ouvre la voie à la conception de batteries tout solide à base d'oxydes de
plus haute densité d'énergie. / This work focuses on how to make an all-solid-state ceramic oxide battery and in particularly the electrolyte and the positive part
of the cell. Since the subject is broad, it has been chosen to approach it through original approaches. ln order to assembly such
batteries, a high temperature treatment (called sintering) of the composites allows !hem to densify and thus to allow the essential
movement of lithium ions through the cell. Such high temperatures obviously cause compatibility issues between materials. Given
the numerous choices of ceramic electrolytes and active materials that are the subject of many publications, the purpose of the
first study is to select the most compatible materials when applying a thermal treatment. This work introduces to the community
the problem of mechanical constraints due to the thermal expansion of materials.
As the number of compatible couples is limited, an original solution was proposed to reduce the sintering temperature by taking
advantage of the glassy form of a ceramic electrolyte. A glass become relatively fluid once its glass transition temperature is
reached, so densification is facilitated at a lower temperature compared to usual sintering techniques. Since the glass is
non-conductive, it must be crystallized to become a functional electrolyte. The second publication therefore studies the
phenomenon of densification and crystallization of the glassy form of the electrolyte Li1.5Al0.5Ge1.5(PO4)3 in order to
understand the mèchanisms and their impacts on the electrochemical properties. Finally, the last study deals with the assembly of
the electrolyte from glass powder using spark plasma sintering. A functional all-solid-state battery prototype is thus real ized at a
temperature of 570°C instead of 650°C in the past literature, thus reducing the degradation problems associated with high
temperatures. This new low-temperature processing technique could be applied to other electrolytes and allow the assembly of
materials that are chemically incompatible at higher temperatures. This paves the way for the development of all-solid-state
ceramic oxide batteries with higher energy density.
|
4 |
Étude des propriétés électriques et structurales de verres de sulfures au lithium pour électrolytes de batteries tout-solide / Electrical and structural properties of Li-sulfide glasses as electrolytes for all-solid-state batteriesCozic, Solenn 15 September 2016 (has links)
Le marché du stockage de l'énergie est en perpétuelle expansion, tant pour les applications nomades que fixes. Afin de répondre aux exigences requises pour les diverses applications (appareils électroniques, véhicules hybrides et électriques, stockage des énergies renouvelables…), des batteries toujours plus performantes, compactes et légères doivent être développées. Pour cela, les batteries utilisant du lithium métallique en tant qu'anode sont les plus attractives en termes de densités d'énergies. Néanmoins, l'utilisation d'électrolytes liquides conventionnels, généralement des solvants organiques inflammables, dans de tels dispositifs soulève des problématiques de sécurité. Les travaux de recherche présentés dans ce manuscrit concernent l'étude de matériaux vitreux pouvant être utilisés en tant qu'électrolyte solide afin de permettre le développement de batteries tout-solide sûres et performantes. Des verres de sulfures au lithium, attractifs pour leurs propriétés de conduction ionique, sont étudiés et caractérisés. Les propriétés de conduction ionique dans les verres étant toujours mal comprises et sujettes à controverses, l'analyse structurale des verres présente ici un réel intérêt pour une meilleure compréhension des corrélations entre structure et propriétés. Un effort de recherche a donc été porté sur l'étude de l'ordre local dans les verres préparés via différentes techniques d'analyse structurale complémentaires. Enfin, les matériaux vitreux, sont de manière générale relativement faciles à mettre en forme. Les verres étudiés dans ce manuscrit peuvent alors également être utilisés en tant qu'électrolytes sous forme de couches minces dans les micro-batteries. Des premiers essais de dépôts par pulvérisation cathodique RF magnétron de couches minces conductrices ont donc été effectués et constituent la première brique à la fabrication de micro-batteries. / The energy storage market is in constant growth for both portable and stationary applications. To satisfy the requirements of various applications (electronic devices, hybrid-electric vehicles, renewable energy storage…), always more efficient, more compact and lightweight batteries have to be developed. Then, thanks to their high energy densities, batteries using Li metal anodes are the most promising to complete this challenge. However, the use of conventional liquid electrolytes raises safety issues, mainly related to the flammability of the organic liquid. In this thesis, glassy materials, exhibiting great interest towards developing solid electrolytes are considered and might enable the development of safe and efficient all-solid-state batteries. Here, Li-sulfide glasses, attractive for their ionic conduction properties, have been studied and characterized. The ionic conduction properties of glasses are still misunderstood and controversial, the structural investigation of glasses is of great interest in order to get a better understanding of structure-properties relationship. Then, the short and intermediate range order of prepared glasses have been investigated by the mean of various complementary structural analysis techniques. Finally, glassy materials are usually quite easy to shape. Thus, studied glasses in this thesis can also be used as thin-film electrolytes in microbatteries. First tests of sputtering of conducting thin-films have been performed by RF magnetron sputtering and constitute a first step in order to design microbatteries.
|
Page generated in 0.0928 seconds