• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 364
  • 180
  • 43
  • 30
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 726
  • 369
  • 261
  • 222
  • 68
  • 68
  • 63
  • 60
  • 59
  • 57
  • 55
  • 54
  • 50
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Computational Modeling of the AT<sub>2</sub> Receptor and AT<sub>2</sub> Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models

Sköld, Christian January 2007 (has links)
<p>Rational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT<sub>2</sub> receptor.</p><p>The bioactive conformation of a peptide can provide important guidance in peptidomimetic design. By designing and introducing well-defined secondary structure mimetics into Ang II the bioactive conformation can be addressed. In this work, both γ- and β-turn mimetic scaffolds have been designed and characterized for incorporation into Ang II. Using conformational analysis and the pharmacophore recognition method DISCO, a model was derived of the binding mode of the pseudopeptide Ang II analogues. This model indicated that the positioning of the Arg side chain was important for AT<sub>2</sub> receptor binding, which was also supported when the structure–activity relationship of Ang II was investigated by performing a glycine scan.</p><p>To further examine ligand binding, a 3D model of the AT<sub>2</sub> receptor was constructed employing homology modeling. Using this receptor model in a docking study of the ligands, binding modes were identified that were in agreement with data from point-mutation studies of the AT<sub>2</sub> receptor.</p><p>By investigating truncated Ang II analogues, small pseudopeptides were developed that were structurally similar to nonpeptide AT<sub>2</sub> receptor ligands. For further guidance in ligand design of nonpeptide compounds, three-dimensional quantitative structure–activity relationship models for AT<sub>1</sub> and AT<sub>2</sub> receptor affinity as well as selectivity were derived. </p>
432

Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models

Sköld, Christian January 2007 (has links)
Rational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT2 receptor. The bioactive conformation of a peptide can provide important guidance in peptidomimetic design. By designing and introducing well-defined secondary structure mimetics into Ang II the bioactive conformation can be addressed. In this work, both γ- and β-turn mimetic scaffolds have been designed and characterized for incorporation into Ang II. Using conformational analysis and the pharmacophore recognition method DISCO, a model was derived of the binding mode of the pseudopeptide Ang II analogues. This model indicated that the positioning of the Arg side chain was important for AT2 receptor binding, which was also supported when the structure–activity relationship of Ang II was investigated by performing a glycine scan. To further examine ligand binding, a 3D model of the AT2 receptor was constructed employing homology modeling. Using this receptor model in a docking study of the ligands, binding modes were identified that were in agreement with data from point-mutation studies of the AT2 receptor. By investigating truncated Ang II analogues, small pseudopeptides were developed that were structurally similar to nonpeptide AT2 receptor ligands. For further guidance in ligand design of nonpeptide compounds, three-dimensional quantitative structure–activity relationship models for AT1 and AT2 receptor affinity as well as selectivity were derived.
433

Composition-Structure Correlations of Bioactive Glasses Explored by Multinuclear Solid-state NMR Spectroscopy

Mathew, Renny January 2015 (has links)
This PhD thesis presents a study of structure-composition correlations of bioactive glasses (BGs) by employing solid-state Nuclear Magnetic Resonance (NMR) spectroscopy. Silicate-based Na2O−CaO−SiO2−P2O5 BGs are utilized clinically and are extensively investigated for bone regeneration purposes. Once implanted in the human body, they facilitate bone regeneration by partially dissolving in the body fluids, followed by the formation of a biomimetic surface-layer of calcium hydroxy-carbonate apatite (HCA). Eventually, the implanted BG totally integrates with the bone. The bioactivity of melt-prepared BGs depends on their composition and structure, primarily on the phosphorus content and the average silicate-network connectivity (NC). We explored these composition-structure relationships for a set of BGs for which the NC and phosphorus contents were varied independently. The short-range structural features of the glasses were explored using 29Si and 31P magic-angle-spinning (MAS) NMR spectroscopy. 31P MAS NMR revealed that the orthophosphate content is directly proportional to the total P content of the glass, with a linear correlation observed between the orthophosphate content and the silicate network connectivity. The bearings of the results for future BG design are discussed. By using multiple-quantum coherence-based 31P NMR experiments, the spatial distribution of orthophosphate groups was probed in the melt prepared BGs, as well as in two mesoporous bioactive glasses prepared by an evaporation-induced self-assembly technique. The results evidence randomly distributed orthophosphate groups in the melt-prepared BGs, whereas the pore-walls of the mesoporous bioactive glasses constitute nanometer-sized clusters of calcium phosphate. The distribution of Na+ ions among the phosphate/silicate groups were studied by heteronuclear dipolar-based 23Na−31P NMR experiments, verifying that sodium is dispersed nearly randomly in the glasses. The phosphorus and proton environments in biomimetically grown HCA were investigated by using 1H and 31P MAS NMR experiments. Our studies revealed that the biomimetic HCA shared many local structural features with synthetic and well-ordered hydroxy-apatite. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Accepted.</p>
434

Structure-function properties of hemp seed proteins and protein-derived acetylcholinesterase-inhibitory peptides

Malomo, Sunday January 2014 (has links)
Hemp seed proteins (HSP) were investigated for physicochemical and functional properties in model food systems. In addition, the HSP were enzymatically digested and the released peptides investigated as potential therapeutic agents. Membrane isolated HSP (mHPC) were the most soluble with >60% solubility at pH 3-9 when compared to a maximum of 27% for isoelectric pH-precipitated proteins (iHPI). However, iHPI formed emulsions with smaller oil droplet sizes (<1 µm) while mHPI formed bigger oil droplets. The iHPI was subjected to enzymatic hydrolysis using different concentrations (1-4%) of six proteases (pepsin, pancreatin, flavourzyme, thermoase, papain and alcalase) to produce various HSP hydrolysates (HPHs). HPHs had strong in vitro inhibitions of angiotensin converting enzyme (ACE) and renin activities, the two main enzyme systems involved in hypertension. Oral administration of the HPHs to spontaneously hypertensive rats led to fast and persistent reductions in systolic blood pressure. The HPHs also inhibited in vitro activities of acetylcholinesterase (AChE), a serine hydrolase whose excessive activities lead to inadequate level of the cholinergic neurotransmitter, acetylcholine (ACh). Inadequate ACh level in the brain has been linked to neurodegenerative diseases such as dementia and Alzheimer’s disease (AD); therefore, AChE inhibition is a therapeutic target. The 1% pepsin HPH was the most active with up to 54% AChE inhibition at 10 µg/mL peptide concentration. The 1% pepsin HPH (dominated by <1 kDa) was subjected to reverse-phase HPLC peptide purification coupled with tandem mass spectrometry, which led to identification of several peptide sequences. Some of the peptides inhibited activities of both animal and human AChE forms with LYV being the most potent against human AChE (IC50 = 7 µg/ml). Thus the LYV peptide may serve as a useful template for the development of future potent AChE-inhibitory peptidomimetics. In conclusion, several novel AChE-inhibitory peptides were discovered and their amino acid sequences elucidated for the first time. Results from this work identified HSP products that could serve as functional ingredients in the food industry. The work also produced and confirmed the in vitro AChE-inhibitory activities of several new peptide sequences that may serve as therapeutic agents for AD management. / October 2015
435

Genotype X environment impact on selected bioactive compound content of fenugreek (Trigonella foenum-graecum L.)

Lee, Ee Lynn, University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
Fenugreek (Trigonella foenum-graecum L.) is a medicinal plant with potential applications in the natural health product industry. In a multi-environmental setting, 10 genotypes were tested across 14 growing environments (using a Randomized Complete Block Design), representing irrigated and rainfed growing conditions in southern Alberta, Canada over two cropping years (2006 and 2007). The objectives of this study were (1) to determine seed yield, plus content and productivity of selected bioactive compounds (galactomannan, diosgenin and 4-hydroxyisoleucine), (2) to assess the impact of growing environment on these variables and (3) to identify promising genotypes for breeding and industrial use. Using principal component and cluster analyses, the study provides insight on the relative influence of growing environments and genes on the biochemical and agronomical traits as well as identifies genotypes based on performance and stability. These are useful as parental materials in cultivar development for the Canadian natural health product industry. / xiii, 154 leaves : ill. (some col.) ; 29 cm
436

Total Synthesis Of Palmerolide A, Dihydroconduritols And Lentiginosine

Pawar, Amit Balkrishna 03 1900 (has links) (PDF)
The thesis entitled “Total synthesis of palmerolide A, dihydroconduritols and lentiginosine” is divided into two chapters. First chapter of the thesis describes the formal total synthesis of bioactive marine macrolide palmerolide A. Palmerolide A was isolated by Baker and co-workers from an Antarctic tunicate Synoicum adareanum. Palmerolide A is a 20-membered macrolactone containing five chiral centers and seven unsaturations. Palmerolide A was found to be potent and selectively cytotoxic against human melanoma cancer cell lines and was also shown to inhibit vacuolar V-ATPase. In section A, enantioselective formal total synthesis of palmerolide A is described. key steps in the synthesis involve Jung non-aldol aldol reaction to construct the C16-C23 fragment 1 and oxidation of a chiral furyl carbinol to assemble the C1-C15 fragment 2. Scheme 1: Synthesis of C16-C23 fragment of palmerolide A. Scheme 2: Formal total synthesis of palmerolide A In section B, enantiospecific formal total synthesis of palmerolide A is presented from chiral pool tartaric acid. This approach is based on coupling of the three fragments viz. C1-C8 enoic acid fragment 3, C9-C15 vinyl stannane fragment 4 and the C16-C23 vinyl iodide fragment 1. The C1-C8 enoic acid fragment 3 is synthesized from L-threotol obtained from L-tartaric acid, while synthesis of the C9-C15 fragment 4 involved the elaboration of a γ-hydroxy amide derived from the bis-Weinreb amide of tartaric acid. Stille coupling of the vinyl iodide 1 obtained by Jung non-aldol aldol process with the vinyl stannane 4 delivered the C9-C23 unit. Esterification of this unit with the enoic acid 3 followed by zinc mediated Boord olefination and RCM furnished the macrolactone which is further elaborated to palmerolide A. Scheme 3: Synthesis of C1-C8 fragment of palmerolide A. Scheme 4: Enantiospecific formal total synthesis of palmerolide A. Section A of the second chapter deals with the enantiospecific synthesis of dihydroconduritols E and F from tartaric acid. Conduritols are 1,2,3,4-cyclohex-5-ene tetrols and are shown to be inhibitors of glycosidase. A number of derivatives of conduritols were found to possess various biological activities. Enantiospecific synthesis of dihydroconduritol E and F is accomplished from tartaric acid employing the Boord type fragmentation and ring closing metathesis as the key steps. Scheme 5: Enantiospecific synthesis of dihydroconduritols E and F Section B of the second chapter describes the enantiospecific total synthesis of ()lentiginosine. Lentiginosine is a dihydroxylated indolizidine alkaloid isolated from leaves of the plant Astragalus lentiginosus. Lentiginosine is the most powerful and competitive inhibitor (IC50 5µg/mL) of amyloglucosidase known so far. Key transformation in the synthesis include the in situ reduction and cyclization of a dihydroxyazide derived from the γ-hydroxy amide prepared from tartaric acid amide. (for structural formula pl see the abstract file.)
437

Bone tissue regeneration indento-alveolar surgery : clinical and experimental studies on biomaterials and bone graft substitutes

Sahlin-Platt, Annika January 2011 (has links)
Pathological processes in the alveolar and facial bones can lead to bone loss that may not heal with complete regeneration. Biomaterials can be used to facilitate the healing process and/or as a bone substitute, but the mechanisms are not fully understood. Persistent leakage of bacteria/bacterial toxins, after root canal treatment, may lead to a residual bone defect. The healing is dependent on a placed dental biomaterial providing a tight seal. The composition of the filling material may also influence the healing process. The general aim of this study is to investigate surface properties and biological interactions of biomaterials used in dento-alveolar surgery. A dental biomaterial, a bonded compomer (DAP) containing a corroding glass filler, was used as a root end filling material, promoting a new operation technique. The healing (assessed according to Molven´s x-ray criteria) demonstrates a significant improvement in healing results for the compomer group, compared to a commonly used technique. The surface properties and biological interactions of DAP were analyzed. ICP-OES of DAP cell culture medium extract demonstrated a significant release of Sr, Si and F from the dental biomaterial. Human periodontal ligament (PDL) cells grew on and around DAP specimens without any sign of toxic reactions. DAP extract stimulated proliferation of PDL cells, but caused an inhibition of osteoblastic gene expression in mouse bone marrow cells. The surface properties of the glass containing compomer may contribute to improved healing of the periapical lesions. A bovine inorganic bone graft substitute (BO) is commonly used as a treatment option in dento-alveolar surgery with new bone formation in immediate close contact with BO material. ICP-OES dissolution analysis of cell culture media, after incubation with BO particles, demonstrated a dosedependent release of Si and a decrease of Ca and P. An uptake of Ca from the medium to the BO particle was demonstrated with calcium-45 labeling. The Si dissolution varied between different batches, possibly reflecting a variation in food intake in the animals. Stimulated osteogenic response was seen in close contact to the BO particles in cell cultures. Furthermore, it was clearly demonstrated that the study design is a critical factor for correctly understanding biomaterials’ biological interactions. The surface properties of three bone graft substitutes reported to have good results in dento-alveolar surgery were investigated, in order to establish whether or not dissolution-precipitation reactions could contribute to the bone healing. Dissolution-precipitation extracts of BO, bioactive glass 45S5 (BG) and a marine algae hydroxyl apatite (AP) in cell culture media were analyzed. Dissolution of Si at significant levels was detected for BO and 45S5 over time. Significant uptake levels of Ca and P from the culture were seen for both 45S5, BO and AP but at different times. Surface analysis of the biomaterials with SEM/EDAX, before and after immersion in cell culture media, revealed a smoothing of the surface morphology for 45S5 over time. No obvious alterations for BO and AP were detected. Ca/P ratio decreased significantly for 45S5, but no major changes were detected by XPS for BO or AP. XPS further demonstrated a surface charge for BO, changing from negatively to positively charged when exposed to serum. 45S5 and AP had positive surface charges, both in the absence and the presence of serum. These demonstrated surface changes in biomaterials could contribute to adherence of cells and subsequently affect bone healing. Conclusion: Biomaterials used in dento-alveolar surgery interact with biological surroundings through surface and dissolution-precipitation reactions which may have implications for bone healing.
438

Anti-HIV activity of selected South African medicinal plants

Hurinanthan, Vashka 17 September 2013 (has links)
Submitted in complete fulfilment for the Degree of Doctorate of Technology (Biotechnology)--Durban University of Technology, 2013. / South Africa has the largest number of people infected with HIV/AIDS. It also has more than 30 000 species of plants and many of these have a long tradition of medicinal use. It is highly likely that the treatment for HIV will come from this traditional knowledge. The need for effective preventative and therapeutic agents for HIV remains an urgent global priority. The aim of this study was to screen selected South African medicinal plants for anti-HIV activity and to identify and characterise an active compound from a plant that can be used for HIV treatment. The aqueous and methanolic extracts of the roots, leaves, flowers and stems of thirty eight plant species (108 extracts) were screened for anti-HIV activity. The plants which had anti-HIV activity were further screened for anti-reverse transcriptase activity. Thirty-two extracts exhibited varying degrees of anti-HIV activity. Cleome monophylla, Dichrostachys cinerea and Leonotis leonurus aqueous leaf extracts had anti-HIV-1 reverse transcriptase activity. The aqueous extracts of D. cinerea showed the best anti-HIV activity with a Selectivity Index of 43.5 and significant anti-HIV-1 reverse transcriptase activity. Crude phytochemical screening of D. cinerea showed that it had tannins, saponins, flavonoids and alkaloids but did not contain any phlobatannins, terpenoids, steroids or phenols. D. cinerea displayed a high degree of free radical scavenging activity with an IC50 of 25 μg/ml, therefore the anti-HIV activity could be attributed to the flavonoids present in the plant. Bio-guided fractionation was used to isolate and purify the active compound from the D. cinerea extract. Compounds were isolated by thin layer chromatography and were tested for anti-HIV-1 and anti-reverse transcriptase activity. From these results the active compound was identified, and purified using preparative TLC. The active compound was characterised by High Performance Liquid Chromatography, Ultraviolet-visible spectrophotometry, and Ultra Performance liquid chromatography coupled to MS/MS. Structural elucidation was performed using Nuclear Magnetic Resonance. From these results, it was deduced that the compound isolated from D. cinerea was a catechin. In this study we show that the catechins present in D. cinerea are responsible for the anti- HIV-I activity and inhibits the reverse transcriptase activity which is a key factor in the progression of HIV. Potentially, these results can be used to develop a new drug for the treatment of HIV or as a cost effective therapeutic agent in treating HIV-infected individuals with oxidative stress. / National Research Foundation
439

Valor nutricional, capacidade antioxidante e utilização de folhas de espinafre (Tetragonia tetragonoides) em pó como ingrediente de pão de forma. / Nutritional value and antioxidant capacity using spinach (Tetragonia tetragonoides) leaves powder as an ingredient of bread.

Azevedo, Fátima de Lourdes Assunção Araújo de 04 September 2012 (has links)
Made available in DSpace on 2015-04-17T14:49:22Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 2587496 bytes, checksum: 770af7c77e4e43893609f4e8cfe5c7eb (MD5) Previous issue date: 2012-09-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Spinach is a dark green leafy vegetables in the diet that helps with the intake of vitamins, proteins, minerals, especially calcium and iron, and bioactive compounds not common in other plants. The objective of this research was to characterize the spinach Tetragonia tetragonoides, fresh and powdered (bleached and un bleached) on the content of nutrients, antinutritional and bioactive compounds, evaluating the effects of bleaching on these compounds, the antioxidant capacity of bioactive compounds and functional potential of spinach bleached powder as an ingredient in the formulation of bread. The powder of spinach leaves, subjected to bleaching, decreased concentrations of nutrients, antinutritional and bioactive compounds, compared to the same product is not bleached. The greatest losses were observed for iron (19,4 %), calcium (18,3 %), oxalic acid (36,4 %), phytic acid (33,5 %) and ascorbic acid (18,74 %). The reduction in bioactive compounds resulted in lower antioxidant capacity of spinach powder bleached, as assessed by FRAP methods and linoleic β-caroteno/ácido, however, this effect was not observed by the DPPH method, and spinach powder, subjected or not to bleaching, presented the same antioxidant power. When the spinach bleached powder was added to the formulation of the loaf of bread, the concentrations of 1 %, 2 % and 3 % was observed better sensory acceptability in the formulation of 3 % was noted that the other as the softness. This formulation showed a higher content of protein, calcium, iron and phosphorus than the control bread. Therefore, the use of spinach as an ingredient of bread can be a good alternative to inclusion of the hardwood vegetables in the diet, contributing to improved nutrition and presenting, in the form bleached, reduced antinutritional content. / O espinafre é uma hortaliça folhosa verde-escuro que presente na dieta contribui com o aporte de vitaminas, proteínas, minerais, especialmente cálcio e ferro, e compostos bioativos não comuns em outros vegetais. O objetivo na presente pesquisa foi caracterizar o espinafre Tetragonia tetragonoides, in natura e em pó (branqueado e não branqueado) quanto ao teor de nutrientes, antinutricionais e de compostos bioativos, avaliando os efeitos do branqueamento sobre esses compostos, a capacidade antioxidante dos compostos bioativos e a utilização do espinafre em pó branqueado como ingrediente na formulação de pão de forma. O pó das folhas de espinafre, submetidas ao branqueamento, apresentou redução nas concentrações dos nutrientes, antinutricionais e compostos bioativos, quando comparado ao mesmo produto não branqueado. As maiores perdas foram observadas para ferro (19,4 %), cálcio (18,3 %), ácido oxálico (36,4 %), ácido fítico (33,5 %) e vitamina C (18,74 %). A redução nos compostos bioativos resultou em menor capacidade antioxidante do espinafre em pó branqueado, quando avaliado pelos métodos FRAP e β-caroteno/ácido linoléico, entretanto, esse efeito não foi verificado pelo método DPPH, tendo o espinafre em pó, submetido ou não ao branqueamento, apresentado o mesmo poder antioxidante. Quando o espinafre em pó branqueado foi adicionado à formulação do pão de forma, nas concentrações de 1 %, 2 % e 3 %, observou-se uma melhor aceitação sensorial para a formulação com 3 %, que se destacou das demais quanto à maciez. Essa formulação apresentou maior teor de proteínas, cálcio, ferro e fósforo que o pão controle. Portanto, a utilização do espinafre como ingrediente de pão de forma pode ser considerada uma boa alternativa de inclusão dessa hortaliça folhosa na dieta, contribuindo para a melhoria nutricional e apresentando, na forma branqueada, reduzido teor de antinutricionais.
440

Prospecção química e biológica do endófito Humicola fuscoatra associado a alga vermelha Asparagopsis taxiformis para obtenção de metabólitos secundários bioativos / Chemical and biological prospection of the endophyte Humicola fuscoatra associated with red algae Asparagopsis taxiformis for the production of bioactive secondary metabolites

Mendonça, Iatã do Carmo 05 October 2018 (has links)
Submitted by Iatã do Carmo Mendonça null (iata.mendonca@hotmail.com) on 2018-11-13T19:26:17Z No. of bitstreams: 1 Dissertação Iatã Final.pdf: 6444130 bytes, checksum: 11f109faa73fa111dd02175f3cf51eaf (MD5) / Approved for entry into archive by Ana Carolina Gonçalves Bet null (abet@iq.unesp.br) on 2018-11-21T12:18:13Z (GMT) No. of bitstreams: 1 mendonca_ic_me_araiq_int.pdf: 6335142 bytes, checksum: 3275b085559a59aa0ff58a993812c371 (MD5) / Made available in DSpace on 2018-11-21T12:18:13Z (GMT). No. of bitstreams: 1 mendonca_ic_me_araiq_int.pdf: 6335142 bytes, checksum: 3275b085559a59aa0ff58a993812c371 (MD5) Previous issue date: 2018-10-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Considerando a variedade de compostos encontrados em produtos de origem natural, o estudo da biodiversidade de um país é de interesse tanto científico quanto econômico. Sendo possível destacar os ecossistemas marinhos que apresentam biodiversidade comparável às florestas tropicais. Devido ao ambiente diferenciado, muitas vezes inóspito, os habitantes do ambiente marinho exibem características bioquímicas diferenciadas, mostrando grande potencial para bioprospecção. A importância do estudo de organismos marinhos na busca por metabólitos secundários bioativos levou à proposta de aprofundar a prospecção química do fungo endofítico Humicola fuscoatra, isolado da alga vermelha Asparagopsis taxiformis. A partir de seu extrato foi possível purificar por técnicas cromatográficas, e identificar 7 substâncias com base nos dados de ressonância magnética nuclear uni e bidimensional (RMN de 1H, RMN de 13C, TOCSY-1D, COSY, HSQC, HMBC) e espectrometria de massas (EM). Dentre estes foram identificados um composto da classe das dicetopiperazinas (P01), duas isocumarinas (P02 e P05), além de 4 substâncias não relatadas na literatura, incluindo três valerolactamas (P03, P06 e P07) e uma cicloexadienona (P04). Além dos compostos purificados por CLAE, foi possível identificar duas substâncias por cromatografia a gás acoplada a espectrometria de massas (CG-EM) sendo elas uma dicetopiperazina e um ftalato. A variedade estrutural dos compostos isolados e a grande quimiodiversidade do extrato de Humicola fuscoatra reforçam a necessidade de se realizar estudos químicos de fungos endofíticos de origem marinha, visto que estes são uma fonte de metabólitos com grande potencial para contribuir na busca por protótipos para novos agentes terapêuticos, além de enfatizar a importância da preservação dos biomas aquáticos, sob constante ameaça por impactos ambientais e mudanças climáticas. / Seeing the variety of compounds obtained from natural products, study a country biodiversity have a scientific interest as well as economic. It is possible to highlight marine ecosystems that present biodiversity comparable to rainforests. Due to the unique environment, often inhospitable, the organisms of the marine environments display uncommon biochemical characteristics, showing great potential for bioprospecting. The importance of the study of marine organisms in the search for bioactive compounds led to the proposal to deepen the prospection of the endophytic fungus Humicola fuscoatra, isolated from the red alga Asparagopsis taxiformis. Its extract led to the purification by chromatographic methods, and identification of 7 compounds based on their NMR spectral data obtained by uni and bidimensional experiments (1H NMR, 13C NMR, TOCSY-1D, COSY, HSQC, HMBC) and mass spectrometry (MS). One diketopiperazine (P01), two isocoumarins (P02 and P05) in addition to four novel compounds, including three valerolactams (P03, P06 and P07) and one cyclehexadienone (P04) were isolated. Moreover another diketopiperazine and one phthalate derivative were identified by gas chromatography coupled to mass spectrometry (GC-MS). The structural variety of the identified compounds associated to the rich chemodiversity observed for the Humicola fuscoatra extract reinforces the need to develop additional chemical studies of endophytic fungal strains of marine origin, since they have been providing metabolites with great potential to the development of novel therapeutic agents, in addition to emphasize the importance of aquatic biomes preservation, as they have been continuously threatened by environmental and climate change impacts.

Page generated in 0.0516 seconds