• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 175
  • 39
  • 24
  • 23
  • 16
  • 12
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 576
  • 128
  • 83
  • 82
  • 78
  • 63
  • 59
  • 59
  • 53
  • 50
  • 47
  • 46
  • 46
  • 45
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Biodegradable Composites : Processing of thermoplastic polymers for medical applications.

Damadzadeh, Behzad, Jabari, Hamideh January 2009 (has links)
Despite the recent development in PLA and PLGA based medical devices, there are still needs to further improve the mechanical performance of bioresorbable medical implants and their bioactivity. This is normally done by optimizing the filler compositions in selected groups ofbiodegradable polymer matrices. In this study, the effects of various filler levels on mechanical strength and thermal properties of PLA and PLGA composites were investigated. Composites containing different dosage of osteoconductive HAp with various particles size (0-5μm, 0-50 μm, nano size), β-TCP, bioactive glass and biodegradable Poly-L-lactide and Polylactide-glycolic acid was manufactured with melt blending, using a twin-screw extruder.The samples were investigated by Differential Scanning Calorimetry (DSC), thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), viscometer, three points bending machine, and Optical Microscopy (OM). The Extruder produced a porous profile. The result from TGA and SEM indicated that there was homogenous filler dispersion in the matrix after compounding.The result from DSC and Viscometer shows that there was some degradation duringcompounding. Mechanical properties of composites were modified by adding filler to matrix. The addition of Bioactive glass, as a filler, increases the degradation of the polymer matrix. The best filler that was applied is 0-5μm and nano HAp. Also in in-vitro degradation part of this thesis work, the effects of calcium phosphate materialsare investigated on degradation process.
562

On Phase Behaviours in Lipid/Polymer/Solvent/Water Systems and their Application for Formation of Lipid/Polymer Composite Particles

Imberg, Anna January 2003 (has links)
<p>A new kind of lipid/polymer composite particle, consisting of a biodegradable polymer matrix with well-defined lipid domains, has been created. The lipid used is the water-swelling lipid monoolein (MO), which forms a reversed bicontinuous cubic diamond structure in aqueous solutions. The polymer is poly(d,l-lactide-co-glycolide) (PLG), which degrades into water-soluble monomers through hydrolysis. This new particle might be a good alternative for encapsulation of active substances intended to be released over a longer period of time, i.e. sustained/retained/controlled release.</p><p>To prepare such particles can be difficult. Suitable phase behaviour and a solvent with the right properties are needed. For this reason, the phase behaviours of several different lipid/polymer/solvent/water systems have been explored. From the phase behaviour of a suitable system (i.e. MO/PLG/ethyl acetate/water), a route for formation of lipid/polymer composite particles has been deduced. Particles have been formed and distinct, water-swelling, lipid domains have been confirmed by characterization by means of confocal laser scanning probe microscopy (CLSM). </p><p>The sample preparation process has been automated and a method based on using a robotic liquid handler has been developed. Phase diagrams have been determined by examination of macroscopic behaviours and the microstructures of the phases have been studied by small- and wide-angle X-ray scattering (L<sub>3</sub>, V<sub>2</sub>, L<sub>α</sub>, L), nuclear magnetic resonance self-diffusion (L, L<sub>3</sub>), viscosimetry (L) and rheology (L). Several different theoretical models have been applied for interpretation of the results. For example, the swelling of the reversed bicontinuous cubic phases and the sponge phase have been modelled by applying the theory of infinite periodical minimal surfaces, the sponge phase has been shown to be bicontinuous according to the theory of interconnected rods and the phase behaviour of the polymer has been described by the Flory-Huggins theory. The main focus of this work (4/5) concerns phase studies in multicomponent systems from a physical-chemical point of view.</p>
563

On Phase Behaviours in Lipid/Polymer/Solvent/Water Systems and their Application for Formation of Lipid/Polymer Composite Particles

Imberg, Anna January 2003 (has links)
A new kind of lipid/polymer composite particle, consisting of a biodegradable polymer matrix with well-defined lipid domains, has been created. The lipid used is the water-swelling lipid monoolein (MO), which forms a reversed bicontinuous cubic diamond structure in aqueous solutions. The polymer is poly(d,l-lactide-co-glycolide) (PLG), which degrades into water-soluble monomers through hydrolysis. This new particle might be a good alternative for encapsulation of active substances intended to be released over a longer period of time, i.e. sustained/retained/controlled release. To prepare such particles can be difficult. Suitable phase behaviour and a solvent with the right properties are needed. For this reason, the phase behaviours of several different lipid/polymer/solvent/water systems have been explored. From the phase behaviour of a suitable system (i.e. MO/PLG/ethyl acetate/water), a route for formation of lipid/polymer composite particles has been deduced. Particles have been formed and distinct, water-swelling, lipid domains have been confirmed by characterization by means of confocal laser scanning probe microscopy (CLSM). The sample preparation process has been automated and a method based on using a robotic liquid handler has been developed. Phase diagrams have been determined by examination of macroscopic behaviours and the microstructures of the phases have been studied by small- and wide-angle X-ray scattering (L3, V2, Lα, L), nuclear magnetic resonance self-diffusion (L, L3), viscosimetry (L) and rheology (L). Several different theoretical models have been applied for interpretation of the results. For example, the swelling of the reversed bicontinuous cubic phases and the sponge phase have been modelled by applying the theory of infinite periodical minimal surfaces, the sponge phase has been shown to be bicontinuous according to the theory of interconnected rods and the phase behaviour of the polymer has been described by the Flory-Huggins theory. The main focus of this work (4/5) concerns phase studies in multicomponent systems from a physical-chemical point of view.
564

Wheat Straw-Clay-Polypropylene Hybrid Composites

Sardashti, Amirpouyan 23 September 2009 (has links)
The preparation of polymeric hybrid composite consisting of organic and inorganic fillers is of interest for industries like automotive, construction and packaging. In order to understand and predict the physical and chemical properties of these hybrid composites, it is necessary to fully understand the nature and properties of the employed fillers. In this study, the preparation of polypropylene hybrid composite consisting of wheat straw and clay was investigated. A detailed study was performed on wheat straw from South Western Ontario region. The effect of grinding the straw and compounding it with polypropylene was investigated. Experiments were carried out to identify the thermal stability of the ground wheat straw with respect to their size and composition. It was important to identify a correlation between these properties in order to minimize the straw degradation by processing and also to improve the final properties of the hybrid composite. The composite samples were prepared through melt blending method using a co-rotating twin-screw extruder. Sample test bars were prepared by injection moulding. The composition of the constituents of the hybrid composite; percentages of wheat straw, clay and coupling agent, were varied in order to investigate their influence on thermal stability, water resistance and mechanical properties. The results of the study indicated that grinding the wheat straw with a hammer mill produced particles with different sizes and shapes. It was found that through the grinding system all particles, regardless of their size, had a multi-layered structure similar to the plant structure. Further hammer milling did not produce plant particles with long aspect ratios that would be expected in a defibrillation process. Analysis of the chemical composition of wheat straw particles of different sizes and shapes was used to measure the ratio of hemicelluloses: lignin and the ash content. It was found that the large particles contained more amount of lignin whereas smaller particles had larger amount of ash content. The thermal stability of the particles was found to be a function of particle size rather than the lignin content. Particle size analysis on the wheat straw particles after the extrusion process indicated a reduction in the particle length and aspect ratio. The thermal stability of the composites was found to be enhanced by the addition of clay particles at higher temperature and the addition of coupling agent at lower temperatures. Increasing the amount of wheat straw and clay content increased the flexural modulus and reduced the resistance for water absorption. Increasing the amount of coupling agent also increased the flexural modulus and resistance for water absorption. The morphological study by scanning electron microscopy revealed that coupling agent increased the interfacial interaction between the particles and the polymer matrix.
565

Wheat Straw-Clay-Polypropylene Hybrid Composites

Sardashti, Amirpouyan 23 September 2009 (has links)
The preparation of polymeric hybrid composite consisting of organic and inorganic fillers is of interest for industries like automotive, construction and packaging. In order to understand and predict the physical and chemical properties of these hybrid composites, it is necessary to fully understand the nature and properties of the employed fillers. In this study, the preparation of polypropylene hybrid composite consisting of wheat straw and clay was investigated. A detailed study was performed on wheat straw from South Western Ontario region. The effect of grinding the straw and compounding it with polypropylene was investigated. Experiments were carried out to identify the thermal stability of the ground wheat straw with respect to their size and composition. It was important to identify a correlation between these properties in order to minimize the straw degradation by processing and also to improve the final properties of the hybrid composite. The composite samples were prepared through melt blending method using a co-rotating twin-screw extruder. Sample test bars were prepared by injection moulding. The composition of the constituents of the hybrid composite; percentages of wheat straw, clay and coupling agent, were varied in order to investigate their influence on thermal stability, water resistance and mechanical properties. The results of the study indicated that grinding the wheat straw with a hammer mill produced particles with different sizes and shapes. It was found that through the grinding system all particles, regardless of their size, had a multi-layered structure similar to the plant structure. Further hammer milling did not produce plant particles with long aspect ratios that would be expected in a defibrillation process. Analysis of the chemical composition of wheat straw particles of different sizes and shapes was used to measure the ratio of hemicelluloses: lignin and the ash content. It was found that the large particles contained more amount of lignin whereas smaller particles had larger amount of ash content. The thermal stability of the particles was found to be a function of particle size rather than the lignin content. Particle size analysis on the wheat straw particles after the extrusion process indicated a reduction in the particle length and aspect ratio. The thermal stability of the composites was found to be enhanced by the addition of clay particles at higher temperature and the addition of coupling agent at lower temperatures. Increasing the amount of wheat straw and clay content increased the flexural modulus and reduced the resistance for water absorption. Increasing the amount of coupling agent also increased the flexural modulus and resistance for water absorption. The morphological study by scanning electron microscopy revealed that coupling agent increased the interfacial interaction between the particles and the polymer matrix.
566

微生物の高密度連続培養に関する研究

山根, 恒夫, 上田, 俊策 03 1900 (has links)
科学研究費補助金 研究種目:一般研究(C) 課題番号:05650796 研究代表者:山根 恒夫 研究期間:1993-1994年度
567

Effects of landfill sites on groundwater quality in Igando, Alimosho Localgovernment Area, Lagos state

Oyiboka, Ifeoma Jennifer 03 1900 (has links)
With increasing population comes the concern for waste disposal. The absence of sanitary disposal methods has left most city residents with open landfills as their only source of waste disposal. The resulting leachate formed from the decomposition of these waste materials is highly polluting and finds its way to the underground water supply. The study investigated the effects of open landfill sites on the underground water quality by examining the physical and chemical properties of underground water in hand-dug wells around the Solous landfill sites in Igando, Alimosho Local Government Area of Lagos State. Solous landfill is the second largest landfill by landmass and volume of waste in Lagos State. Systematic random sampling was used for data gathering. Eighteen hand-dug wells were sampled at increasing distances from the landfill site. Physical, chemical and microbiological parameters were analysed at the Lagos State Environmental Protection Agency (LASEPA). Soil samples were also taken from both the A (0 – 30cm) and B (30 – 60cm) horizons of the water sampling points to determine the soil texture (silt, clay and loamy composition) and to show the impact of soil texture on ground water quality within the sampled area. The level of contamination of groundwater was also determined using the Contamination Index method. The results showed high degree of conformance with W.H.O standard with respect to the microbiological properties of the sampled groundwater. However, coliform tests indicated the potential presence of pathogens. Of the seven (7) physical parameters tested, conductivity was higher in one sample. The study of chemical properties from the eighteen wells showed five (5) parameters (dissolved oxygen, total alkalinity, iron, lead, nitrates and copper) above W.H.O limits in some samples. The water may therefore not be safe for human consumption and there is a serious need to monitor the groundwater quality in the area. The level of contamination of groundwater was also determined using the Contamination Index method. Areas of high and medium contamination were discovered. There was no area with low contamination level in the area sampled. Contamination levels were mapped to show the exact levels of contamination in the study area. The results of the soil analysis showed that the study area had soil that was mostly sandy in nature which may suggest an increase in parameters over time with significant health implications for the people who depend on surrounding wells for domestic use. The study also showed no significant variation in water quality with increasing distance from the dump site. Findings also indicated that the water around Solous 1 was of better quality for domestic use than groundwater around Solous 2 and 3 due to temporal reduction of contaminant concentration. There is therefore a need for adequate and proper planning, design and construction, and strategic management disposal of waste, as well as the implementation of a better sustainable environmental sanitation practice. / Environmental Sciences / M. Sc. (Environmental Science)
568

Assessment of Environmental Issues And Biodegradation Aspects of Current MSW Practices of Developing Country Metropolises - A Case Study of Bangalore

Shwetmala, * January 2016 (has links) (PDF)
Municipal solid waste (MSW) production has significantly increased in the rapidly urbanizing developing world and also changed composition with increased decomposable organic fraction in MSW (OFMSW) and plastics content. This has stressed the environment in many ways while city managers and citizens have responded with various technological and management solutions leading to a need for scientific, environmental, technological and sustainability assessments of the emerging problems. This sets the research agenda and framework for this study wherein the MSW generation, composition, processing and treatment methods, open dumping practices, environmental liability, natural degradation, sustainability issues etc. have been studied for the city of Bangalore as a model for such an emerging problem. Results show that MSW generation ranged from 0.1-0.4 kg/person/day and the OFMSW content was >80% emerging predominantly from fruit, vegetable and food wastes. About 10-15% of daily MSW generated appeared to be haphazardly dumped around the city in ~700 small to large dumps ranging from 10-6,500 m2 with potential for large GHG emissions. Their spread and characteristics were assessed for 3 consecutive years using a novel rapid survey method developed at IISc involving motorcycle borne student volunteer teams, GPS enabled locating, physical measurements and satellite image interpretations. Results indicated that dump sites were of three types, ephemeral small sized in the core area (303) functioning as transfer stations, medium sized ones in outer areas that were closed rapidly with construction debris and very soon inhabited with dwellings and the larger and longer duration dumps (2-3 years, 393) in the peripheral regions within 10 km from the city administrative boundary. This method was compared with physical measurement and satellite imaging and gave very high level of accuracy and is hence suggested for other cities as well. A smaller fraction of MSW is also dumped in open drains that lead to choking and flooding of 3 locations and this was studied with some detail. The environmental footprint of such dumps were assessed by theoretical and experimental on-site and off-site approaches and experimental results show low GHG (CH4) emissions and emission factors that was largely attributable to the shallow depth of dumps (~0.7 m) and its low pH. The decomposition rates were experimentally determined for open dump sites and drivers for decomposition monitored. By providing differential access to macro-fauna, meso-micro organisms and only soil contact in field scale experiments it was determined that the greatest loss in weight occurred primarily due to the rapid drying process that brings down decomposition within 6 days. During the early stages of decomposition, mostly micro with meso organisms are responsible and after 6 days, the moisture content falls below 60% making microbiological decomposition difficult and enabling other foraging organisms to take over. The weight loss (decay) could be patterned both on exponential decay or a two component fit representing a rapid initial decay followed by a slower long term decay process similar to soil application of organic matter. Monitoring the decentralized MSWM practices in the city suggests that small scale composting and biomethanation is gaining acceptance and is the possible direction for OFMSW in growing cities.
569

Návrh zařízení pro termomechanickou předúpravu BRO / Design of equipment for thermo mechanical pre-treatment of biodegradable waste

Kolařík, Ivo January 2011 (has links)
The main objective of this master’s thesis is to develop design equipment for thermomechanical pre-treatment of biodegradable waste. An important aspect of the design is taking into account current legislation, sanitary conditions for determining the pre-treated biodegradable material, which also serves as a raw material for biogas production. So the device will be used to monitor the impact of thermomechanical pre-treatment of biodegradable waste for biogas recovery. The following describes the processes of anaerobic decomposition of biodegradable materials and technology, whose main task is intensification of anaerobic decomposition of organic materials. The theoretical work are given various methods of processing and utilization of biodegradable wastes, focusing on kitchen waste and sludge from sewage plants. The next section describes the various factors that may affect the stability of the process of biogas generation. This also results in yield and chemical composition of biogas. A key part of this master’s thesis is to develop technical documentation and an approximate calculation of the hot slurry.
570

Chitosan biopolymer as an adsorbent for drinking water treatment : Investigation on Arsenic and Uranium

Annaduzzaman, Md January 2015 (has links)
In many countries over the world (including Sweden), metal toxicity in freshwater resources causes a severe drinking water quality problem and poses a threat to the environment and human health. Among the different toxic metals in the water resources of Sweden, arsenic and uranium are the biggest threats to health. These elements, over long time consumption, may even lead to cancer and/or neurological disorder. Most of the wells are installed in crystalline and sedimentary bedrock and the received water comes from water bearing fractures in the bedrock. The handling of such water is an issue and there is a need to reduce the arsenic and uranium exposure by improving processes and technologies. It is a very serious problem demanding a safe, sustainable and eco-friendly arsenic and uranium removal technology prior to drinking water supply. Different treatment systems are available, but many of them are not suitable due to their high cost, operation complexity and waste management issues. Through this study, chitosan biopolymer the second largest abundant polysaccharide on earth after cellulose, was verified as a potential adsorbent for arsenic(V) and uranium(VI) removal from water solution. Adsorbent characterizations were also conducted by XRD, FTIR, SEM, UV-visible spectrum and TGA/DTA investigations. Bench-scale batch experiments were conducted using chitosan biopolymer (DDA-85%) as an adsorbent to determine the arsenic(V) and uranium(VI) removal efficiency, by allowing four important effective parameters e.g. chitosan dosages, pH, contact time and contaminant concentration. The adsorption data at optimum conditions were fitted with Langmuir, Freundlich and Dubinin-Radushkhevic (D-R) isotherm and Lagergren pseudo-first-order and pseudo-second-order kinetic model to investigate the adsorption process. The characterization of materials assured the presence of effective amino, hydroxyl, and carboxyl groups of chitosan. Another advanntage is that the materials are bio-degradable. The results show that the arsenic(V) and uranium(VI) removal efficiency was 100% and 97.45% after 300 minutes with optimum pH of 6.0 and 7.0 respectively. The optimum adsorbent dosages and initial concentration were 60 and 80g/L and 100 and 250 µg/L respectively. The adsorption process was suitably described by Freundlich isotherm (R2 = 0.9933) and Langmuir isotherm (R2 = 0.9858) correspondingly for arsenic(V) uranium(VI) compared to other isotherms. This is an important indicator of homogeneous monolayer adsorption of metals. For both of arsenic(V) and uranium(VI), pseudo-second-order explained the adsorption kinetics better than pseudo-first-order and the second-order kinetic regression coefficient (R2) were 0.9959 and 0.9672 correspondingly. Connecting to the above mentioned results, it can be summed up that the chitosan biopolymer (DDA 85%) can be used as an inexpensive, sustainable and environment-friendly treatment option for arsenic(V) and uranium(VI) contaminated drinking water. / I många länder världen runt (även i Sverige) orsakar metallers toxicitet besvärliga vattenkvalitetsproblem och utgör ett hot mot människors hälsa. Bland de toxiska metaller som finns i svenska vatten utgör arsenik och uran i dricksvatten allvarliga hälsorisker vid långvarig exposition då de kan orsaka cancer och neurologiska problem. Flertalet brunnar är installerade i kristallint berg och sedimentära bergarter och vattnet kommer vanligen från sprickor i berggrunden. Hanteringen av sådant vatten kan kräva reduktion av expositionen för arsenik- och uraninnehåll genom förbättrade processer och teknologier. Detta är ett angeläget problem som kräver en säker, pålitlig och ekovänlig teknologi att tillämpas innan vattnet distribueras. En rad olika behandlingssystem är tillgängliga men många av dem är inte lämpliga beroende på deras höga kostnad, den komplicerade tillämpningen och problem med hanteringen av restprodukter. I denna studie has biopolymeren chitosan, den näst vanligaste polymeren efter cellulosa, konstaterats vara en möjlig adsorbent för att avlägsna arsenik(V) och uran(VI) från vatten. Karakterisering av adsorbenten har också genomförts genom XRD, FTIR, SEM, UV och strålning i synligt ljus samt TGA/DTA undersökningar. Batch-tester i bänkskala har genomförts med användning av chitosan (DDA-85%) som adsorbent för att bestämma dess förmåga att avlägsna arsenik(V) och uran(VI)genom att variera fyra parametrar, nämligen kontakttid, pH, dos av chitosan och halt av föroreningen. Adsorptionsdata vid optimala förhållanden bestämdes genom tillämpning av Langmuir, Freundlich och Dubinin-Radushkhevic (D-R) isotermerna. Vidare tillämpades Lagergrens pseudo-first-order och pseudo-second-order kinetiska modell för att undersöka adsorptionsprocessen. Karakteriseringen av materialet visade förefintligheten av effektiva amino- (N-H), hydroxyl- (O-H) samt karboxylgrupper (C=O) i chitosan-polysackariden och att det är lätt nedbrytbart. Preliminära resultat visar att reduktionen av arsenik(V) och uran(VI) var 100 respektive 97,45 % efter 300 minuters kontakttid med optimalt pH på 6,0 respektive 7,0. De optimala doserna av adsorbent och den initiala koncentrationen var 60 och 80 g/L och 100 och 250 µg/L. Adsorptions process beskrevs bäst av Freundlich-isotermen för arsenik(V) (R2 = 0.9933) och med Langmuir-isotermen för uran(VI) (R2 = 0,9858) jämfört med andra isotermer vilket var en viktig indikation på en homogen monolager-adsorption. För både arsenik(V) och uran(VI) beskrev pseudo-second order adsorptionen bättre än pseudo-first-order. Second-order kinetiska regressionskoefficienten (R2) var 0.9959 och 0.9872 respektive. De ovanstående resultaten visar sammanfattningsvis att chitosan (DDA-85%) kan användas som en billig, pålitlig och miljövänlig behandlingsmetod av vatten för arsenik(V) och uran(VI). / <p>QC 20150526</p> / ChitoClean

Page generated in 0.0873 seconds