• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 175
  • 39
  • 24
  • 23
  • 16
  • 12
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 575
  • 128
  • 83
  • 82
  • 77
  • 63
  • 59
  • 58
  • 53
  • 50
  • 47
  • 46
  • 46
  • 45
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Mitigation of Ammonia Emissions from Broiler Houses Using a Biodegradable Litter Amendment

Senyondo, Namanda Sara 06 May 2013 (has links)
Broilers are raised indoors on high density farms with bedding/litter to trap their manure. Ammonia gas, which is produced as the manure decomposes, has adverse effects on human health, bird welfare and the environment. Using litter amendments can reduce the amount and, consequently, the effects of ammonia emitted from broiler houses. The objective of this study was to determine the effectiveness of a biodegradable litter amendment (BLA) in reducing ammonia emitted from a broiler house. A pilot scale test was set up with six adjacent, individually ventilated rooms and a stocking density of 0.07 m² per bird. The birds were fed with a standard commercial, corn and soybean meal based diet and water was provided ad libitum. The first flock was grown on 10 cm of fresh, kiln-dried pine shavings, while subsequent flocks were grown on top-dressed reused litter. The two treatments (control (CTL) and BLA) were randomly assigned to the six rooms after flock 1, to give three replicates per treatment. The exhaust air from the rooms was sampled for ammonia concentration for two days each week starting at four days of age to determine the amount of ammonia emitted. Over three subsequent flocks, the total mass of ammonia emitted from rooms treated with BLA was 31% to 47% lower than the control. Ammonia emitted per bird grown on treated litter and per kg of harvested bird weight was 32% to 44% lower, and the exhaust fans ran 7% to 22% less than CTL over the same period. For both BLA and CTL, the amount of ammonia emitted generally increased with bird age and litter reuse. The study showed that BLA effectively reduced ammonia emitted from a broiler house and that there are potential energy savings from using the amendment. However, ammonia emitted from the BLA rooms during the final flock was 57% higher than CTL, which was attributed to insufficient water (less than 18% moisture by weight) to support the reaction between BLA and ammonia. / Ph. D.
92

Metal-organic frameworks and their biodegradable composites for controlled delivery of antimicrobial drugs

30 January 2023 (has links)
Yes / Antimicrobial resistance (AMR) is a growing global crisis with an increasing number of untreatable or exceedingly difficult-to-treat bacterial infections, due to their growing resistance to existing drugs. It is predicted that AMR will be the leading cause of death by 2050. In addition to ongoing efforts on preventive strategies and infection control, there is ongoing research towards the development of novel vaccines, antimicrobial agents, and optimised diagnostic practices to address AMR. However, developing new therapeutic agents and medicines can be a lengthy process. Therefore, there is a parallel ongoing worldwide effort to develop materials for optimised drug delivery to improve efficacy and minimise AMR. Examples of such materials include functionalisation of surfaces so that they can become self-disinfecting or non-fouling, and the development of nanoparticles with promising antimicrobial properties attributed to their ability to damage numerous essential components of pathogens. A relatively new class of materials, metal-organic frameworks (MOFs), is also being investigated for their ability to act as carriers of antimicrobial agents, because of their ultrahigh porosity and modular structures, which can be engineered to control the delivery mechanism of loaded drugs. Biodegradable polymers have also been found to show promising applications as antimicrobial carriers; and, recently, several studies have been reported on delivery of antimicrobial drugs using composites of MOF and biodegradable polymers. This review article reflects on MOFs and polymer-MOF composites, as carriers and delivery agents of antimicrobial drugs, that have been studied recently, and provides an overview of the state of the art in this highly topical area of research.
93

Growth Plate Regeneration Using Polymer-Based Scaffolds Releasing Growth Factor

Clark, Amanda 01 January 2013 (has links)
Currently growth plate fractures account for nearly 18.5% of fractures in children and can lead to stunted bone growth or angular deformation. If the body is unable to heal itself a bony bar forms, preventing normal bone growth. Clinical treatment involves removing the bony bar and replacing it with a filler substance, which causes poor results 60% of the time. Using primarily poly(lactic-co-glycolic acid) (PLGA) as the scaffold material, the goal was to develop an implant that would support to the implant site, allow for cell ingrowth, and degrade away over time. Porous scaffolds were fabricated from PLGA microspheres using the salt leaching method. The first part of this work investigated the effect of sintering the microspheres by studying the mechanical properties, degradation and morphology and their potential applications for hard and soft tissue implants. Growth factor or drugs can be encapsulated into PLGA microspheres, which was the second part of this work. Encapsulated insulin-like growth factor I (IGF-I) was able to withstand the scaffold fabrication process without compromising it’s bioactivity and promoted cell proliferation. The next part of this work experimented with the addition of a hydrogel porogen. Porogen particles were made using a quick degrading poly(beta-amino ester) (PBAE) hydrogel and loaded with ketoprofen. The addition of the porogen creates a dual drug-releasing scaffold with a localized delivery system. The final step of this work involved animal studies to determine the effectiveness of the scaffolds in growth plate regeneration and how they compare to the current clinical treatment option. Gross observation, microCT analysis, angular measurement of bone growth and histological methods were employed to evaluate the scaffolds. The goal was to develop a versatile scaffold that could be used for a wide range of tissue engineering applications. The mechanical properties, degradation profiles and drug delivery capabilities can be all tailored to meet the specific needs of an implant site. One specific application was regenerating the native growth plate that can also encourage the endogenous mesenchymal stem cells to follow the desire linage. By regenerating the native growth plate, angular deformation and stunted limb growth were greatly reduced.
94

Additives to Control Mechanical Properties and Drug Delivery of Injectable Polymeric Scaffolds

Fisher, Paul 01 January 2014 (has links)
In situ forming implants (ISIs) are popular due to their ease of use and local drug delivery potential, but they suffer from high initial drug burst, and release behavior is tied closely to solvent exchange and polymer properties. Additionally, such systems are traditionally viewed purely as drug delivery devices rather than potential scaffold materials due to their poor mechanical properties and minimal porosity. The aim of this research was to develop an injectable ISI with drug release, mechanical, and microstructural properties controlled by micro- and nanoparticle additives. First, an injectable ISI was developed with appropriate drug release kinetics for orthopedic applications. Poly(β-amino ester) (PBAE) microparticles were loaded with simvastatin or clodronate, and their loading efficiency and drug retention after washing was quantified. Drug-loaded PBAE microparticles and hydroxyapatite (HA) microparticles were added to a poly(lactic-co-glycolic acid) (PLGA)–based ISI. By loading simvastatin into PBAE microparticles, release was extended from 10 days to 30 days, and burst was reduced from 81% to 39%. Clodronate burst was reduced after addition of HA, but was unaffected by PBAE loading. Scaffold mass and porosity fluctuated as the scaffolds swelled and then degraded over 40 days. Next, the mechanical properties of these composite ISIs were quantified. Both micro- and nanoparticulate HA as well as PBAE microparticle content were varied. Increasing HA content generally improved compressive strength and modulus, with a plateau occurring at 30% nano-HA. Injectability remained clinically acceptable for up to 10% w/w PBAE microparticles. Ex vivo injections into trabecular bone improved both strength and modulus. Lastly, HA-free ISIs were investigated for drug delivery into the gingiva to treat periodontitis. Doxycycline and simvastatin were co-delivered, with delivery of doxycycline over 1 week accompanied by simvastatin release over 30 days. PBAE-containing ISIs exhibited higher initial and progressive porosity and accessible volume than PBAE-free ISIs over the course of degradation. Additionally, PBAE-containing ISIs provided superior tissue retention within a simulated periodontal pocket. The ISIs investigated here have a wide range of potential applications due to their flexible material and drug release properties, which can be controlled by both the chemistry and concentration of various particulate additives.
95

Biocompósitos poliméricos de poli(butileno adipato-co-tereftalato) : PBAT e fibra natural de Munguba, nativa da Amazônia (Pseudobombax munguba) / Polymeric biocomposites of poly(butylene adipate-co-terephthalate) : PBAT and Munguba (Pseudobombax munguba), a natural fiber native from Amazônia

Pinheiro, Ivanei Ferreira, 1987- 07 October 2012 (has links)
Orientador: Ana Rita Morales / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-20T21:17:33Z (GMT). No. of bitstreams: 1 Pinheiro_IvaneiFerreira_M.pdf: 6507466 bytes, checksum: 544ce949996ee364af7bcc47e112b2ec (MD5) Previous issue date: 2012 / Resumo: Neste trabalho estudou-se biocompósitos poliméricos obtidos a partir de um poliéster biodegradável e fibra natural de Munguba (Pseudobombax munguba) nativa da região amazônica. Trata-se de uma fibra de grande abundância encontrada nas regiões alagadiças da floresta, para a qual não existem relatos na literatura de sua utilização em biocompósitos poliméricos. Estudou-se a influência do tamanho da fibra, da concentração, e de tratamentos químicos na superfície da fibra, sobre as propriedades finais dos biocompósitos. As fibras naturais foram moídas e classificadas por tamanho e submetidas a tratamentos químicos. A fim de avaliar as modificações promovidas pelos tratamentos empregados, as propriedades mecânicas, morfologia e propriedades de superfície foram analisadas. A análise por Espectroscopia no Infravermelho (FTIR) mostrou o aparecimento de grupos ésteres confirmando a troca de hidroxila por acetila. Os ensaios mecânicos de tração mostraram que a modificação química proporcionou aumento de 75% no módulo elástico da fibra. Pelas análises de morfologia e de ângulo de contato, foram verificadas alterações superficiais significativas da fibra de munguba, enquanto que a análise termogravimétrica (TGA) mostrou que a modificação química aumentou a estabilidade térmica em comparação com a fibra natural. Os biocompósitos foram preparados por mistura em alto cisalhamento no estado fundido, utilizando fibras naturais e quimicamente tratadas com teores de 10 e 20% variando-se o tamanho das fibras. Os resultados indicaram que o aumento na concentração de fibra foi a principal responsável pelas mudanças nas propriedades mecânicas. As análises morfológicas mostraram que os tratamentos químicos não foram eficazes em promover boa interação fibra-matriz. Modelos mecânicos foram usados para prever o módulo de elasticidade dos biocompósitos sendo que o modelo de Russell descreveu com boa adequação os sistemas estudados. Através da calorimetria exploratória diferencial (DSC) verificou-se que a adição de fibras provocou alterações na cristalinidade, diminuição na temperatura de fusão e aumento na temperatura de cristalização na matriz / Abstract: In this work it was studied polymer biocomposites made from a biodegradable polyester and natural fiber Munguba (Pseudobombax Munguba) native to the Amazon region, found in great abundance marshy areas of the forest, for which there are no literature reports of its use in polymer biocomposites. The effects of fiber size, concentration and chemical treatment on the fiber surface on the final properties of the biocomposites were studied. The natural fibers have been milled and classified by size and subjected to chemical treatment. In order to evaluate the changes promoted by employed treatment, the mechanical properties, surface properties and morphology were evaluated. Infrared Spectroscopy (FTIR) analysis showed the appearance of ester groups to hydroxyl confirming the exchange by acetyl. By the tensile strength tests showed that the chemical modification time increased by 75% the elastic modulus of the fiber. The analysis of the morphology and the contact angle, significant surface changes were observed in the Munguba fiber, whereas the thermogravimetric analysis (TGA) showed that the chemical modification increased the thermal stability in comparison to the natural fiber. The biocomposites were prepared by high shear mixing in the molten state using natural, and chemically treated fibers with levels of 10 and 20% varying the size of the fibers. The results indicated that increasing the concentration of fiber was mainly responsible for the changes in mechanical properties. The morphological analysis showed that the chemical treatments were not effective in promoting good fiber-matrix interaction. Mechanical models were used to predict the elastic modulus of the biocomposites and the model of Russell presented a good fit to the studied systems. By differential scanning calorimetry (DSC) showed that the addition of fibers caused changes in crystallinity decrease in melting temperature and crystallization temperature increase in the matrix / Mestrado / Ciencia e Tecnologia de Materiais / Mestre em Engenharia Química
96

Characterization of 3D printed polyester scaffolds modified by nano-hydroxyapatite for bone tissue engineering

Chen, Weitong 06 August 2021 (has links)
Characterization of 3D printed polyester scaffolds modified by nano-hydroxyapatite for bone tissue engineering
97

Nanocomposites based on nanocellulose whiskers

Saxena, Amit 09 January 2013 (has links)
Environmental concerns arising from the use of non-degradable plastics have resulted in search for suitable substitutes. The thesis deals with new nanostructured composites based on reinforcement of nanocellulose whiskers in "green" polymers such as xylan. Since the reinforcement filler and the matrix are both biobased and are thereby environmental friendly. Xylan incorporated with cellulose whiskers films provided with improved water and oxygen barrier properties. It appears that the high degree of crystallinity of cellulose whiskers, dense composite structure formed by the whiskers and rigidly hydrogen-bonded cellulose whiskers can cause cellulose whiskers to form integrated matrix which contribute to substantial benefit in the overall reduction of transmission rate. The spectral data obtained for the NCW/xylan nanocomposite films showed that the amount of xylan adsorbed to cellulose increases with the addition of NCW in the matrix. In addition, NMR T2 relaxation experiments studies were conducted to investigate the change in the nature of carbohydrate-water interactions as a result of NCW incorporation. These results facilitated an improved understanding of the mechanisms involved in the superior barrier and mechanical properties of xylan-whisker nanocomposite films. XRD studies show that when a xylan-whisker nanocomposite films is formed the mixing occurs on the atomic scale and NCW loading increases the matrix crystallinity.
98

Vliv technologie kompostování biologicky rozložitelných odpadů na kvalitu kompostu

DVOŘÁK, Zdeněk January 2018 (has links)
The thesis deals with composting and ways of handling biodegradable waste and biodegradable municipal waste. It explains the terms related to composting and processing of BW and BMW and clarifies the difference between humus and primary organic matter and its composition. Furthermore, the thesis covers qualitative and quantitative features of compost, raw material composition of the dump, and factors influencing the process of decomposition itself. The practical part of the thesis describes the quality of the compost from the municipal composting plant Písek. This part also includes a description of the composting plant and a description of the composting process. The main part and the goal of the thesis is to determine the ion-exchange capacity T according to Sandhoff and to suggest the optimal composting technology in the Municipal composting plant Písek.
99

SÍNTESE DE POLI (ÁCIDO LÁTICO-CO-ÁCIDO GLICÓLICO) ATRAVÉS DE POLICONDENSAÇÃO CATALISADA POR RESINA DE TROCA IÔNICA CONTENDO ÓXIDO DE ESTANHO COMO CO-CATALISADOR. / SYNTHESIS OF POLY (lactide-co-glycolic acid) BY Polycondensation Catalyzed by ION EXCHANGE RESIN CONTAINING OXIDE TIN AS CO-CATALYST

OLIVEIRA, Leonardo François de 27 November 2008 (has links)
Made available in DSpace on 2014-07-29T15:12:47Z (GMT). No. of bitstreams: 1 dissertacao Leonardo Francois quimica.pdf: 194110 bytes, checksum: 750a31eb02f149c7536ac63de960592b (MD5) Previous issue date: 2008-11-27 / In this study PLGA copolymers were synthesized with molecular weight above 10 kDa through direct polycondensation of L-lactic acid and glycolic acid monomers. Catalysts based on sulfonated styrenedivinylbenzene copolymer (SC) containing or not Sn2+ íons adsorbed as SnCl2.H2O colloidal particles from neutral solution or [SnCl3]- complex anions from acid solution were prepared. All catalysts were evaluated by specific surface area and pore volume measurements, infrared spectroscopy, X-ray diffraction, atomic absorption spectrophotometry and ion exchange capacity. The obtained PLGA copolymers were characterized by infrared spectroscopy, X-ray diffraction and inherent viscosity measurements. Independent of pH solution of the adsorptions, it was observed that Sn2+ ions were oxidized to Sn4+ forming SnO2. This oxidation probably occurred during catalysts drying process in the presence of oxygen. The PLGA copolymers with highest inherent viscosities, i.e., highest molecular weights were obtained with SC catalyst containing SnO2 prepared by adsorption of SnCl2.H2O colloidal particles in neutral solution. It was estimated that the highest PLGA molecular weights were equal or larger than 35 kDa. The produced PLGA presented white or lightly yellow color and Sn contamination less than 1 ppm which is below the limit allowed by the Brazilian legislation / No presente trabalho foram sintetizados copolímeros PLGA com massa molar acima de 10 kDa por policondensação direta dos monômeros ácido L-láctico e ácido glicólico. Foram preparados catalisadores à base de copolímero estireno-divinilbenzeno sulfonado (CS) contendo ou não íons Sn2+ adsorvidos na forma de partículas coloidais de SnCl2.H2O em meio neutro ou na forma do ânion complexo [SnCl3]- em meio ácido. Todos os catalisadores foram avaliados por medidas de área superficial específica e volume de poros, espectroscopia de infravermelho, difração de raios X, espectrofotometria de absorção atômica e capacidade de troca iônica. Os copolímeros PLGA obtidos foram caracterizados por espectroscopia de infravermelho, difração de raios X e medidas de viscosidade inerente. Foi verificado que independente do pH do meio de adsorção, os íons Sn2+ foram oxidados a Sn4+ formando o óxido SnO2. Essa oxidação ocorreu, provavelmente, durante o processo de secagem dos catalisadores na presença de oxigênio. Os copolímeros PLGA com maiores viscosidades inerentes, ou seja, maiores massas moleculares foram obtidos pelo uso de catalisador CS contendo SnO2 preparado pela adsorção de partículas coloidais de SnCl2.H2O em meio neutro. Foi estimado que as maiores massas moleculares de PLGA foram iguais ou maiores que 35 kDa. Os copolímeros PLGA produzidos apresentaram coloração branca ou levemente amarelada e contaminação por Sn inferior a 1 ppm bem abaixo do limite permitido pela Legislação Brasileira
100

Efektivní nakládání s biologicky rozložitelným odpadem / Effective management of biological waste

Petříčková, Alena January 2017 (has links)
Theoretical part of present study gives a comprehensive overview of the methods used for the disposal of biodegradable waste with emphasis placed on highly effective techniques. Composting process is studied in detail and machinery used is thoroughly described. Acquired information from extensive research was applied to create a model of composting plant. Operation manual for this specific model forms part of the study. Afterwards various decomposing scenarios are analyzed and their economic sustainability is evaluated.

Page generated in 0.0559 seconds