391 |
Biogas in Swedish transport – a policy-driven systemic transitionLönnqvist, Tomas January 2017 (has links)
The thesis analyzes the conditions for biogas in the Swedish transport sector. Biogas can contribute to the achievement of Sweden’s ambitious targets of decreased emissions of greenhouse gases and an increased share of renewables in the transport sector, a sector that encompasses the major challenges in the phase-out of fossil fuels. Biogas development has stagnated during recent years and there are several factors that have contributed to this. The use of biogas in transport has developed in niches strongly affected by policy instruments and in this thesis, the progress is understood as a policy-driven systemic transition. Biogas has (started to) become established at the regime level and has begun to replace fossil fuels. The major obstacles for continued biogas development are found to be the stagnated vehicle gas demand, the low predictability of Swedish policy instruments, and electric car development. Moreover, the current prolonged period of low oil prices has also contributed to a lack of top-down pressure. A large share of the cheap and easily accessible feedstock for conventional biogas production is already utilized and an increased use of vehicle gas could enable a commercial introduction of forest-derived methane. However, the technologies to produce forest-derived methane are still not commercial, although there are industrial actors with technological know-how. Future biogas development depends on how the policy framework develops. Policy makers should consider the dynamics of biogas as a young sociotechnical system where different system fronts develop at a varying pace. Currently the demand side is lagging behind. However, it is necessary to maintain predictable policy support throughout the entire biogas value chain, since the system fronts that lag can vary over time. The low predictability of Swedish policy instruments indicates that policy makers should exercise care in their design to create a more robust policy framework moving forward. / <p>QC 20170508</p>
|
392 |
Unapređenje metoda za utvrđivanje uštede emisija gasova s efektom staklene bašte pri korišćenju biogasa iz kukuruzovineVišković Miodrag 04 October 2019 (has links)
<p>Kukuruzovina je žetveni ostatak i potencijalni supstrat za proizvodnju biogasa. Direktivom 2018/2001 definisan je tzv. RED metod za obračunavanje ušteda emisija gasova s efektom staklene bašte– GHG. Metod je primenjiv za silažu kukuruza i stajnjak kao supstrat za proizvodnju biogasa, ali se na neadekvatan način obračunavaju emisije GHG za kukuruzovinu. Cilj je bio da se predlože unapređenja RED metoda kojima bi se prevazišli identifikovani problemi, kao i da se ispita uticaj primene unapređenog metoda na ocenu ušteda emisija GHG energetskog iskorišćenja biogasa iz kukuruzovine, tj. na ocenu održivosti. Uštede emisija GHG za sve razmatrane slučajeve primene RED metoda u osnovnoj i unapređenoj formi, imale su vrednost nižu od postavljenog kriterijuma od 70 %, tj. nisu održivi. Predloženo je da se RED metod unapredi ukidanjem pravila da se ne obračunavaju emisije GHG pre ubiranja žetvenih ostataka i da je potrebno da se navede da je ostatak fermentacije ko-produkt proizvodnje i korišćenja biogasa, kao i da je primena alokacije emisija GHG na biogas i ostatak fermentacije obavezna u slučaju primene ostatka fermentacije na polja sa kojih nisu ubirani žetveni ostaci.</p> / <p>Corn stover is a crop residue and potential substrate for biogas production. Directive<br />2018/2001 defines so-called RED method for determination of greenhouse gas (GHG)<br />emission savings. In the case of energy utilization of biogas produced from corn stover,<br />savings are calculated in an inadequate manner. The objective was to suggest the<br />improvements of the RED method in order to overcome the identified problems, as well<br />as to investigate the impact of the application of the improved method on the evaluation<br />of GHG emission savings, i.e. the the sustainability evaluation. The results of the GHG<br />emission savings, using the basic and the improved forms of RED method, show that all<br />considered cases had a value lower than the set criterion of 70%, i.e. they are not<br />sustainable. It was suggested to improve the RED method by abolishing the rule that<br />GHG emissions prior to collection of crop residue are not accounted. Also, it should be<br />noted that the digestate is a co-product of biogas production as well that the application<br />of the GHG emissions allocation to biogas and the digestate is mandatory in the case<br />when digestate is used on fields other than those used for substrate provision.</p>
|
393 |
Analysis and assessment of biogas production potential in Sweden for 2050Norr, Patrik January 2019 (has links)
The world is about to shift from fossil fuel dependency to independency. The national agenda of Sweden has put forth future goals of becoming a zero net greenhouse gas emitter by the year 2045 and before that, having an 80 % fossil fuel independent transportation fleet by 2030. In order to achieve these goals, the form of energy used in the transport sector needs to be changed into a more renewable solution. Biogas could be part of the solution. The aim of this report has been to review earlier research regarding the future biogas potential in Sweden and to examine how realistic and practically feasible these are. Three of the substrates that has shown the highest future potential according to earlier research; energy crops, manure and black liquor has been chosen for investigating their future potential. Interviews was made with biogas researcher in Sweden as well as government employees working with biogas and other biofuels. Scenario building was another method used were the report have created four future scenarios with varying optimistically future economic and technical outcomes using more practical limitations and restrictions. The result was a combined future potential of between 0,42 – 77,54 TWh/annually from all three substrates using the values and information gathered from the interviewers regarding how to calculate the potential. The result shows that depending on how lucrative the future financial support systems and subsidies as well as how efficient the technical breakthroughs will be, biogas can become a large contributor to the transport sectors transition in becoming less fossil fuel dependent.
|
394 |
Evaluation of treatment techniques of the effluent air at biogas upgrading plants / Utvärdering av reningstekniker för utgående luft från biogasuppgraderingsanläggningarSkogsdal, Rickard January 2011 (has links)
In nature, organic matter is degraded by microorganisms. During the degradation gases formedincludes methane, carbon dioxide, hydrogen sulfide, and small amounts of other gases such asVOCs. This has been utilized with help of anaerobic digesters, where environments have beencreated, in which these organisms thrive. In these chambers the gases are collected together intosomething called biogas.Biogas is a renewable energy source where the methane gas natural affinity for combustion inoxygen-containing environments is being used. By separating the methane from the other gases, theenergy value becomes closer to that of natural gas. The upgraded biogas can thus act as a substitutefor natural gas and be used as a fuel for vehicles, a need that has increased during the last years.This is preferred since natural gas is a fossil fuel.A technique used for upgrading biogas is water scrubbers. By using the gases different tendency todissolve into the water, carbon dioxide and hydrogen sulfide can be removed. During this process asmall amount methane and VOC becomes absorbed as well. The upgraded biogas obtains a methanecontent of approximately 98 % and can then be used as a fuel for vehicles. The removed gases are atthe same time released from the water to the effluent air leaving the upgrading plant. This has beendeemed inappropriate since the hydrogen sulfide is a corrosive and highly toxic gas. The methaneand VOCs that leaves with the effluent air provides negative effects to the greenhouse effect andglobal environment.This study has examined the issue of how to treat the gases that are emitted by the effluent air.Using measurements to find the percentage amounts of the different gases in the effluent air and inthe raw biogas, annual quantities of emissions could be calculated. From these, various treatmentmethods have been analyzed where the author finally concluded that a reduction of hydrogensulfide should be achieved with help of iron in a filter. Methane has instead been proposed to betreated with a compost filter. / I naturen bryts organiska ämnen ned med hjälp av mikroorganismer. Under nedbrytningen bildasbland annat metan, koldioxid, svavelväte samt flera andra gaser så som VOC. Detta har utnyttjats dåman med hjälp av anaeroba rötkammare skapat miljöer där dessa mikroorganismer trivs. I dessakammare samlas gaserna ihop till någonting som kallas för biogas.Biogas är en förnyelsebar energikälla där man utnyttjar metangasens naturliga förutsättningar till attförbrännas i syrehaltiga miljöer. Genom att separera metangasen från de övriga gaserna, kanenergivärden nära naturgas fås. Den uppgraderade gasen kan på så vis agera som ett substitut tillnaturgas och därmed användas som drivmedel till fordon, ett behov som ökat under de senaste åren.Detta är att föredra då naturgas är ett fossilt bränsle.En teknik som används för separeringen av gaserna är vattenskrubbrar. Genom att utnyttja gasernasolika benägenhet att lösa sig i vatten så kan koldioxiden och svavelvätet tas bort. Under dennaprocess absorberas även mindre mängder metan och VOC. Den uppgraderade biogasen får genomprocessen cirka 98 % metanhalt och kan därefter användas för att driva fordon. De borttagnagaserna frigörs samtidigt från vattnet och släpps istället ut från uppgraderingsanläggningen medhjälp av en luftström. Detta har bedömts vara olämpligt då svavelvätet är korrosivt och en mycketgiftig gas. Metanen och VOCn som följer med den utgående luften har negativa egenskaper förväxthuseffekten och den globala miljön.Denna studie har undersökt hur de gaser som normalt släpps ut med det utgående luftflödet skallbehandla. Med hjälp av mätningar av de procentuella gasmängderna i den utgående luften samt iden råa biogasen har kvantiteter på årliga emissionerna kunnat uppskattas. Utifrån dessa har olikareningsmetoder analyserats där slutsatsen är att reducera svavelvätet med hjälp av Järn i ett filter.Metangasen har istället föreslagits bli renad i ett kompost filter.
|
395 |
Pretreatment technologies to increase the methane yields by anaerobic digestion in relation to cost efficiency of substrate transportationBorgström, Ylva January 2011 (has links)
Med ett växande energibehov i världen, sinande energikällor i form av fossila bränslen och en miljö som vi under en längre tid har förorenat behövs det nya energiformer som är mer långsiktiga och framförallt miljövänliga. En sådan energiform är biogas. Biogasprocessen är dock inte helt optimerad. Flera av de substrat som används idag tar lång tid att röta och bryts bara ner till viss del i processen eller innehåller onödigt mycket vatten, vilket ger höga transportkostnader. Med syfte att göra biogasprocessen mer ekonomisk lönsam utvärderas i denna rapport på uppdrag från E.ON några olika förbehandlingstekniker: Ångexplosion, extrusion, avvattning och kalkbehandling. Förhoppningen är att dessa ska kunna öka lönsamheten för storskalig biogasproduktion och kanske möjliggöra biogasproduktion från tidigare obrukbara substrat som fjädrar och halm. För att jämföra och utvärdera förbehandlingsteknikerna utfördes batchrötningsförsök i 330 ml flaskor med obehandlade och förbehandlade substrat. De flesta förbehandle substraten gav snabbare nedbrytning och några gav även högre metanutbyte än de obehandlade. Fjädrar och halm, som från början hade ett lågt utbyte, påverkades mest av förbehandlingen. Ångexploderade fjädrar gav efter 44 dagars rötning 141% högre metanutbyte och extruderad halm gav 22% högre metanutbyte än obehandlad. För ekonomiska beräkningarna användes en referensanläggning med en förutbestämd substratmix: 12500 ton majs och 11500 ton hästgödsel. Att tillgå för referensanläggningen finns dessutom fjädrar. Cambis THP-anläggning för ångexplosion visade sig vara alldeles för dyr för referensanläggningen. En THP-anläggning kräver en större biogasanläggning där en större mängd svårnedbrytbara substrat rötas för att bli lönsam. En extruder skulle kunna vara lönsam för för refernsanläggningen om hästgödseln som de har tillgång till innehåller halm som strömaterial. En investering i en extruder bara för att förbehandla majsensilage visade sig inte lönsam. Avvattning av gödsel gav signifikant lägre utbyte av biogas per torrvikt men signifikant högre utbyte per våtvikt. Avvattningsutrustningen från Splitvision, som testades, var för dyr för att bli lönsam. Först när gården låg 4 mil från biogasanläggningen blev det billigare att avvattna gödsel och transportera den jämfört med att transportera den obehandlad. Andra avvattningsutrustningar i studien var billigare i drift så det finns möjligheter att tekniken kan bli lönsam med någon av dessa. / The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found. The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found.
|
396 |
Optimering och effektivisering av biogasprocessen vid biogasanläggningen Kungsängens gård / Optimization and potentiation of the biogasprocess at the biogas plant Kungsängens gårdFrid, Sara January 2012 (has links)
Under år 2008 användes globalt en energimängd motsvarande nästan 144 000 TWh ochav dessa stod fossila bränslen för 81 %. I Sverige uppgick energitillförseln under år2010 till totalt 616 TWh och av detta stod råolja/oljeprodukter för 30,4 %. Vidförbränning av fossila bränslen frigörs koldioxid, en gas som bidrar till att förstärkaväxthuseffekten. År 2000 uppmättes halten av koldioxid i atmosfären till 370 ppmv ochför att den globala temperaturen inte ska öka med mer än 2°C bör halten stanna på 450ppmv innan år 2100. Ett sätt att minska andelen av fossila bränslen är att öka andelen avförnybara energikällor, som t.ex. biogas, som i Sverige uppskattas kunna ge enenergimängd motsvarande 10-15 TWh/år i framtiden.Vid biogasanläggningen Kungsängens gård, Uppsala, samrötas slakteriavfall samtorganiskt avfall från hushåll och livsmedelsindustri i en termofil rötningsprocess. Underår 2011 producerades ca 3 400 000 Nm3 biogas och den största andelen uppgraderadestill fordonsgas. Behovet fordonsgas i Uppsala ökar och i detta examensarbete utreddestvå sätt att effektivisera processen och öka gasproduktionen. Dels undersöktes om enökad belastning skulle ge en ökad biogasproduktion utan att riskera processensstabilitet. Detta gjordes i två labskalereaktorer där belastningen ökades gradvis i denena. Dels studerades möjligheten att minska energiförbrukningen på anläggningengenom att byta hygieniseringsmetod. Innan substratet matas in i rötkamrarna måste dethygieniseras, vilket i dagsläget görs genom pastörisering (upphettning till 70oC under entimme). Då detta är väldigt energikrävande finns det planer på att byta metod ochistället låta substratet hygieniseras i rötkamrarna (52°C) i minst 10 timmar. Det är dockviktigt att beakta huruvida metanpotentialen för pastöriserat och opastöriserat materialskiljer sig åt, varför detta utreddes i sk satsvisa utrötningsförsök.Genom hela belastningsökningen (från 3 till 6 kg VS/m3,d) ökade biogasproduktionenoch vid den högsta belastningen var ökningen 100 % jämfört med dagens nivå. Andraviktiga processparametrar, så som specifik gasproduktion, kvoten CO2/CH4, pH,halterna av fettsyror och utrötningsgraden, låg på en jämn nivå under försöket, vilkettyder på att processen var stabil trots den ökade belastningen. Utrötningsförsöket visadeatt pastöriseringen inte hade någon effekt på metanproduktionen, troligtvis eftersomsubstratet redan var lättnedbrytbart. Beräkningen av energiförbrukning visade attenergianvändningen skulle minska med ca 33 % vid byte av hygieniseringsmetod. / During 2008 an amount of energy equivalent to almost 144,000 TWh was used globally,of which fossil fuels accounted for 81 %. In Sweden, during 2010, an amount of energyequivalent to 616 TWh was used, of which crude oil/oil products accounted for 30.4 %.Carbon dioxide, a gas that contributes to the global warming, is produced during thecombustion of fossil fuels. In 2000 the levels of carbon dioxide in the atmosphere wasmeasured to be 370 ppmv and if the global temperature is not to increase with morethan 2°C, the levels should stay at 450 ppmv by 2100. One way of decreasing the use offossil fuels is to increase the use of renewable energy, such as biogas. In the futurebiogas can, approx., provide with energy equivalent to 10-15 TWh/year in Sweden.At the biogas plant Kungsängens gård, in Uppsala, slaughterhouse byproducts are codigestedwith source separated household waste and waste from the food processingindustry in a thermophilic process. During the year 2011 approximately 3,400,000 Nm3of biogas was produced at the plant, of which most was upgraded to vehicle fuel. Theconsumption of vehicle fuel is increasing in Uppsala and thus there is a need forincreased biogas production. The aim of this master thesis was to investigate two waysto increase the efficiency and consequently the gas production at the biogas plant atKungsängens gård. Firstly, it was studied if an increased organic loading rate (OLR)would give an increased biogas production, without disturbing the process. This wasdone in two lab scale reactors, where the load was increased gradually in one. Secondly,the possibility to decrease the energy consumption by means of a change of sanitizationmethod was studied. The substrate has to be sanitized before it is fed to the digesters,currently this is done by pasteurization. This process is, however, energy-demandingand there are plans to change the method of sanitization. It is, however, important toconsider whether the methane potential differs for the pasteurized and the nonpasteurizedsubstrate. This was studied in small scale biogas batch reactors.Through all stages of increased OLR (from 3 to 6 kg VS/m3, d) the biogas productionincreased, and at the largest load the increase was 100 % compared to the present level.Other important process parameters, such as specific methane production, CO2/CH4-ratio, pH, levels of fatty acids and degree of digestion, were at regular levels and thisindicates that the process was maintained stable in spite of the increased load. The testin the small scale biogas batch reactors showed that pasteurization of the substrate hadno effect on the methane potential, probably due to that the substrate already is readilybiodegradable. The estimation of the energy consumption showed that the use of energyshould decrease with approx. 33 % if the sanitization was replaced.
|
397 |
Optimeringsunderlag för anaerob rötning av flytgödsel från nötkreatur / Basis for optimization of anaerobic digestion with cattle manureGregeby, Erik January 2009 (has links)
Produktions- och optimeringspotentialen vid anaerob rötning av flytgödsel från nötkreatur granskades. Detta genom att, i laboratoriemiljö, undersöka förändringar i processtabilitet, gasproduktion och metanhalt vid tillsats av kycklinggödsel och pH-buffert med flytgödsel från nötkreatur som grundsubstrat. Tillsatsen av pH-buffert underlättade tillväxtfasen för mikroorganismerna, snabbare ökning i metanhalt och den totala metangasproduktionen ökade. Skillnaden var som störst under tillväxtfasen och avtog från stationärfas och framåt. Tillsats av kycklinggödsel har i detta fall inhiberat processen, möjligtvis på grund av ammoniakinhibering vid tillsats av det kväverika substratet som kycklinggödsel är. / Production potential and basis for optimization of anaerobic digestion with cattle manure was reviewed by examining process stability, gas production and methane content in a laboratory environment via addition of pH buffer and chicken manure with slurry from cattle manure as basic feedstock. Addition of pH buffer facilitated the growth of microorganisms by more rapid increase in methane content and greater quantities of produced methane gas. The effects were high during the growth stage but decreased, during and after, the stationary phase. Addition of chicken manure caused inhibition of the process, probably caused by ammonia inhibition from high nitrogen content in chicken manure.
|
398 |
Effekter av en liten biogasanläggning hos småbrukande bönder i Östra Afrika : En studie med utgångspunkt från en småbrukande familj i Kadongo, KenyaEriksson, Elin January 2011 (has links)
Syftet med den här uppsatsen är att redovisa för de effekter som kan sespå odlingssystem samt livssituation hos småbrukande bönder i Östra Afrika efter ett införande av en liten biogasanläggning kallad "floating drum". Anläggningen genererar rötrester som används som gödslingsmedel i odlingssystem och biogas som bränsle i matlagningssituationer. Resultatet baseras på uppgifter från litteratur, fältstudier och en enkätundersökning. Uppsatsen har sin utgångspunkt från en fältstudie hos en småbrukande familj på landsbygden. Studien genomfördes i ett område som heter Kadongo och ligger i nordvästra Kenya. Familjen installerade en "floating drum" med hjälp av biståndsorganisationen Vi-skogen. Biogasen från en "floating drum" kan helt eller delvis ersätta ved, kol och fotogen som idag är de vanligaste bränslena för energiframställning i Kenya. Mycket mark och landområden har förstörts och förstörs eftersom dessa behövs för odlingar och träden skövlas för att få vedbränsle. Under de senaste trettio åren har mer än halva skogsytan i Kenya försvunnit. När biogas ersätter vedbränsle innebär det att många träd kan sparas. Insamling av ved för den småbrukande familjen är ett tungt och tidskrävande arbete och kan ta uppemot fyra timmar per dag. Arbetet på gården består även av att samla in vatten och sköta odlingarna. När veden ersätts av biogas förbättras familjens men framförallt kvinnans livssituation då det är kvinnan som står för det huvudsakliga arbetet på gården. Förbättringar kan även ses på familjens hälsa eftersom de inte längre behöver inandas den farliga eldröken. På odlingssystem kan olika effekter ses, bland annat i form av ökade skördar, förbättrad kvalité på grödor och ett minskat behov av kemiska gödslings- och bekämpningsmedel. Andra effekter som kan ses är att jämställdheten i familjen ökar och att kvinnan får en ökad social status. En installation av en biogasanläggning är en stor investering och risker för kvävningsolyckor samt explosioner föreligger vid användandet. Kunskap, information och utbildning är viktiga komponenter för att anläggningen ska fungera och inte bli stående ur bruk.
|
399 |
Optimeringsunderlag för anaerob rötning av flytgödsel från nötkreatur / Basis for optimization of anaerobic digestion with cattle manureGregeby, Erik January 2009 (has links)
<p>Produktions- och optimeringspotentialen vid anaerob rötning av flytgödsel från nötkreatur granskades. Detta genom att, i laboratoriemiljö, undersöka förändringar i processtabilitet, gasproduktion och metanhalt vid tillsats av kycklinggödsel och pH-buffert med flytgödsel från nötkreatur som grundsubstrat. Tillsatsen av pH-buffert underlättade tillväxtfasen för mikroorganismerna, snabbare ökning i metanhalt och den totala metangasproduktionen ökade. Skillnaden var som störst under tillväxtfasen och avtog från stationärfas och framåt. Tillsats av kycklinggödsel har i detta fall inhiberat processen, möjligtvis på grund av ammoniakinhibering vid tillsats av det kväverika substratet som kycklinggödsel är.</p> / <p>Production potential and basis for optimization of anaerobic digestion with cattle manure was reviewed by examining process stability, gas production and methane content in a laboratory environment via addition of pH buffer and chicken manure with slurry from cattle manure as basic feedstock. Addition of pH buffer facilitated the growth of microorganisms by more rapid increase in methane content and greater quantities of produced methane gas. The effects were high during the growth stage but decreased, during and after, the stationary phase. Addition of chicken manure caused inhibition of the process, probably caused by ammonia inhibition from high nitrogen content in chicken manure.</p>
|
400 |
Biomass and waste as a renewable and sustainable energy source in Vietnam / Nguồn năng lượng tái tạo bền vững từ sinh khối và rác thải sinh học ở Việt NamSchirmer, Matthias 25 August 2015 (has links) (PDF)
Due to Vietnam’s economic development its energy demand will continue to rise by 12–16% annually over the next few years. The government has realized that supply problems in the energy sector pose a significant threat to further development. Therefore, it is making concerted efforts to modernize the existing energy sector and expand the generating structure. There are ambitious expansion plans in the field of renewable energy sources, too. Owing to its very high potential, biomass could play a key role in energy production. This paper attempts to analyze the current status of biomass based energy production in Vietnam addressing variety of aspects such as biomass potential, legal framework as well as financial aspect. Section 4 contains an overview of ongoing bioenergy projects. Instead of providing a complete picture, these examples are intended to illustrate the various ways in which biomass can be used in different economic sectors. Finally existing barriers as well as action to incentivise bioenergy are discussed. / Do phát triển kinh tế, nhu cầu năng lượng của Việt Nam sẽ tiếp tục tăng 12-16% mỗi năm trong vài năm tới. Chính phủ đã nhận ra rằng vấn đề cung cấp trong lĩnh vực năng lượng gây ra một mối đe dọa đáng kể cho sự phát triển tiếp theo. Vì vậy, có các nỗ lực để hiện đại hóa ngành năng lượng hiện có và mở rộng cấu trúc sản sinh năng lượng. Cũng có những kế hoạch mở rộng đầy tham vọng trong lĩnh vự nguồn năng lượng tái tạo. Do có tiềm năng rất cao, sinh khối có thể đóng một vai trò quan trọng trong sản xuất năng lượng. Bài viết này cố gắng phân tích tình trạng hiện tại của sản xuất năng lượng sinh khối tại Việt Nam giải quyết nhiều khía cạnh nhưtiềm năng sinh khối, khuôn khổ pháp lý cũng như các khía cạnh về tài chính. Tổng quan về các dự án năng lượng sinh học đang diễn ra được trình bày trong phần 4. Thay vì cung cấp một bức tranh hoàn chỉnh, các ví dụ được dùng để minh họa cho những cách khác nhau, trong đó sinh khối có thể được sử dụng trong các lĩnh vực kinh tế khác nhau. Rào cản cuối cùng hiện tại cũng nhưhành động để khuyến khích năng lượng sinh học sẽ được thảo luận.
|
Page generated in 0.0455 seconds