• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pretreatment technologies to increase the methane yields by anaerobic digestion in relation to cost efficiency of substrate transportation

Borgström, Ylva January 2011 (has links)
Med ett växande energibehov i världen, sinande energikällor i form av fossila bränslen och en miljö som vi under en längre tid har förorenat behövs det nya energiformer som är mer långsiktiga och framförallt miljövänliga. En sådan energiform är biogas. Biogasprocessen är dock inte helt optimerad. Flera av de substrat som används idag tar lång tid att röta och bryts bara ner till viss del i processen eller innehåller onödigt mycket vatten, vilket ger höga transportkostnader. Med syfte att göra biogasprocessen mer ekonomisk lönsam utvärderas i denna rapport på uppdrag från E.ON några olika förbehandlingstekniker: Ångexplosion, extrusion, avvattning och kalkbehandling. Förhoppningen är att dessa ska kunna öka lönsamheten för storskalig biogasproduktion och kanske möjliggöra biogasproduktion från tidigare obrukbara substrat som fjädrar och halm.  För att jämföra och utvärdera förbehandlingsteknikerna utfördes batchrötningsförsök i 330 ml flaskor med obehandlade och förbehandlade substrat. De flesta förbehandle substraten gav snabbare nedbrytning och några gav även högre metanutbyte än de obehandlade. Fjädrar och halm, som från början hade ett lågt utbyte, påverkades mest av förbehandlingen. Ångexploderade fjädrar gav efter 44 dagars rötning 141% högre metanutbyte och extruderad halm gav 22% högre metanutbyte än obehandlad.  För ekonomiska beräkningarna användes en referensanläggning med en förutbestämd substratmix: 12500 ton majs och 11500 ton hästgödsel. Att tillgå för referensanläggningen finns dessutom fjädrar. Cambis THP-anläggning för ångexplosion visade sig vara alldeles för dyr för referensanläggningen. En THP-anläggning kräver en större biogasanläggning där en större mängd svårnedbrytbara substrat rötas för att bli lönsam. En extruder skulle kunna vara lönsam för för refernsanläggningen om hästgödseln som de har tillgång till innehåller halm som strömaterial. En investering i en extruder bara för att förbehandla majsensilage visade sig inte lönsam.  Avvattning av gödsel gav signifikant lägre utbyte av biogas per torrvikt men signifikant högre utbyte per våtvikt. Avvattningsutrustningen från Splitvision, som testades, var för dyr för att bli lönsam. Först när gården låg 4 mil från biogasanläggningen blev det billigare att avvattna gödsel och transportera den jämfört med att transportera den obehandlad. Andra avvattningsutrustningar i studien var billigare i drift så det finns möjligheter att tekniken kan bli lönsam med någon av dessa. / The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found. The world needs new energy sources that are durable for long time and which not affect the environment negatively. Biogas fulfills those demands. The biogas process is however not completely optimized. Several of the substrates used today for biogas production are slowly degraded and only partly digested in the process. Other substrates consist of unnecessarily much water which makes transportation costly. To optimize the process and make the biogas process more profitable, several pretreatment techniques are evaluated by direction of E.ON in this report: steam explosion, extrusion, lime treatment and dewatering. The hope is that one of those could increase the profitability and hopefully also enable substrates that not are working today like feathers and straw. To compare and evaluate the different pretreatment batch digester, experiments were carried out during 31-44 days for untreated and pretreated substrates. Most pretreated substrates were faster degraded than untreated and some also gave a higher methane yield. Chicken waste feathers and wheat straw, which had low methane yields untreated, were affected most by pretreatment. Steam exploded feathers gave after 44 days of digestion 141% higher methane yield and extruded straw gave 22% higher methane yield than untreated samples of the same substrate. A reference plant with a substrate mixture of 12500 tonnes of maize silage and 11500 tons of horsemanure annually was used to make economical calculations. Additionally, chicken waste feathers waste could be included. Obtainable for the reference plant were also chicken waste feathers. Steam explosion appeared to be too expensive for a plant in the size of the reference plant. Its large capacity could probably make it profitable for a much larger biogas plant running on a lot of hard digestible substrates. An extruder could be a profitable investment for the reference plant if the plant gets horse manure with straw as bedding material. To just use the extruder to pretreat maize silage could not make the investment profitable. Dewatering of manure gave significantly lower methane yield per dry weight but significantly higher methane yield per wet weight. The increase in methane yield per wet weight makes the substrate better for transportation. The dewatering equipment from Splitvision tried in this study had too high operational costs and was too expensive to make dewatering particularly profitable. Only when the farm was situated farther away than 40km from the biogas plant it was cheaper to dewater the manure before transport than to transport the manure without any pretreatment. Other dewatering equipments evaluated in this study had much lower operational costs and among those an equipment that makes dewatering profitable might therefore be found.
2

Design av ångexplosionsreaktor : Utformning av ångexplosionsreaktor för laborativt bruk

Nordlund, Jonatan January 2023 (has links)
Förbehandling av lignocellulosa genom ångexplosion är en förbehandling av biomassa som förändrar strukturen i fibrernas cellväggar. Vid förbehandlingen värms biomassa med mättad ånga under tryck till minst 140 ˚C, detta leder till att flyktiga ämnen avgår från biomassan. När den uppvärmda biomassan är färdigbehandlad utsätts den för en kraftig trycksänkning vilket leder till att fukten i biomassan övergår till ånga och bidrar till ökad porositet, minskad materialstorlek och förändrad struktur i cellväggarna. Genom kartläggning av ett befintligt kokkärl på SCA R&D Centre och litteraturstudier inom området utforskas möjligheten att bygga om kokkärlet till ångexplosionsreaktor för laborativt bruk. Ett utformningsförslag togs fram varpå en termodynamisk modell över reaktionen skapades i Excel med hjälp av makrot Xsteam. Dimensionering av blåstank till förslaget gjordes baserat på ångexplosion av två kg tallflis med två fukthalter, 40 och 60%. Resultaten visar att en ombyggnation är möjlig, ångpannan begränsar dock ångtrycket till 10 bar. Vid behandling av två kg tallflis med en fukthalt om 40 respektive 60% dimensionerades anläggningens blåstank till 376 respektive 493 liter. Den nya reaktorn designades som skild från atmosfären. En sådan reaktor möjliggör framtida analys av bland annat flyktiga ämnen vilket kan bidra till effektivare tillvaratagande av restströmmar. / Pretreatment of lignocellulose by steam explosion is an energy efficient method that alters the structure of the fiber cell walls. Biomass is heated with pressurized saturated steam during the pretreatment to at least 140˚C, causing the release of volatile substances. Once the heated biomass is treated to desired severity, it undergoes a significant pressure reduction, causing the moisture in the biomass to turn into steam and contribute to increased porosity, reduced particle size and altered structure in the fiber cell walls. By examining an existing digester at the SCA R&D Centre and conducting literature studies in the field, the possibility of converting the digester into a steam explosion reactor for laboratory use is explored. A design proposal was developed, upon which a thermodynamic model of the reaction was created in Excel using the Xsteam macro. Dimensioning of the blow tank for the proposal was based on steam explosion of two kg pine chips with two moisture levels, 40% and 60%. The results indicate that such a conversion is possible, however, the steam pressure is limited to 10 bar overpressure due to the existing steam boiler. When treating two kg of pine chips with moisture content of 40% and 60% respectively, the sizing of the blow tank for the facility was determined to be 376 liters and 493 liters respectively. The new reactor was designed to be isolated from the atmosphere, enabling future analysis of volatile substances, which can contribute to a more efficient utilization of residual streams.
3

Improving methane production using hydrodynamic cavitation as pre-treatment / Förbättrad methanproduktion med hydrodynamisk kavitation som förbehandling

Abrahamsson, Louise January 2016 (has links)
To develop anaerobic digestion (AD), innovative solutions to increase methane yields in existing AD processes are needed. In particular, the adoption of low energy pre-treatments to enhance biomass biodegradability is needed to provide efficient digestion processes increasing profitability. To obtain these features, hydrodynamic cavitation has been evaluated as an innovative solutions for AD of waste activated sludge (WAS), food waste (FW), macro algae and grass, in comparison with steam explosion (high energy pre-treatment). The effect of these two pre-treatments on the substrates, e.g. particle size distribution, soluble chemical oxygen demand (sCOD), biochemical methane potential (BMP) and biodegradability rate, have been evaluated. After two minutes of hydrodynamic cavitation (8 bar), the mean fine particle size decreased from 489- 1344 nm to 277- 381 nm (≤77% reduction) depending of the biomasses. Similar impacts were observed after ten minutes of steam explosion (210 °C, 30 bar) with a reduction in particle size between 40% and 70% for all the substrates treated.  In terms of BMP value, hydrodynamic cavitation caused significant increment only within the A. nodosum showing a post treatment increment of 44% compared to the untreated value, while similar values were obtained before and after treatment within the other tested substrates. In contrast, steam explosion allowed an increment for all treated samples, A. nodosum (+86%), grass (14%) and S. latissima (4%). However, greater impacts where observed with hydrodynamic cavitation than steam explosion when comparing the kinetic constant K. Overall, hydrodynamic cavitation appeared an efficient pre-treatment for AD capable to compete with the traditional steam explosion in terms om kinetics and providing a more efficient energy balance (+14%) as well as methane yield for A. nodosum. / Det behövs innovativa lösningar för att utveckla anaerob rötning i syfte att öka metangasutbytet från biogassubstrat. Beroende på substratets egenskaper, kan förbehandling möjliggöra sönderdelning av bakterieflockar, uppbrytning av cellväggar, elimination av inhiberande ämnen och frigörelse av intracellulära organiska ämnen, som alla kan leda till en förbättring av den biologiska nedbrytningen i rötningen. För att uppnå detta har den lågenergikrävande förebehandlingsmetoden hydrodynamisk kavitation prövats på biologiskt slam, matavfall, makroalger respektive gräs, i jämförelse med ångexplosion. Effekten på substraten av dessa två förbehandlingar har uppmäts genom att undersöka distribution av partikelstorlek, löst organiskt kol (sCOD), biometan potential (BMP) och nedbrytningshastigheten. Efter 2 minuters hydrodynamisk kavitation (8 bar) minskade partikelstorleken från 489- 1344 nm till 277- 281 nm (≤77 % reduktion) för de olika biomassorna. Liknande påverkan observerades efter tio minuters ångexplosion (210 °C, 30 bar) med en partikelstorlekreducering mellan 40 och 70 % för alla behandlade substrat. Efter behandling med hydrodynamisk kavitation, i jämförelse med obehandlad biomassa, ökade metanproduktionens hastighetskonstant (K) för matavfall (+65%), makroalgen S. latissima (+3%), gräs (+16 %) samtidigt som den minskade för A. nodosum (-17 %). Förbehandlingen med ångexplosion ökade hastighetskonstanten för S. latissima (+50 %) och A. nodosum (+65 %) medan den minskade för gräs (-37 %), i jämförelse med obehandlad biomassa. Vad gäller BMP värden, orsakade hydrodynamisk kavitation små variationer där endast A. nodosum visade en ökning efter behandling (+44 %) i jämförelse med obehandlad biomassa. Biomassa förbehandlade med ångexplosion visade en ökning för A .nodosum (+86 %), gräs (14 %) och S. latissima (4 %). Sammantaget visar hydrodynamisk kavitation potential som en effektiv behandling före rötning och kapabel att konkurrera med den traditionella ångexplosionen gällande kinetik och energibalans (+14%) samt metanutbytet för A. nodosum.

Page generated in 0.0735 seconds