• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 10
  • 10
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anaerobic Digestion of Wastewater: Effects of Inoculants and Nutrient Management on Biomethane Production and Treatment

Peterson, Jason 01 May 2017 (has links)
Due to population expiation and the increased awareness of the impact on the environment by wastewater treatment, improved wastewater treatment systems are needed to treat municipal and agricultural wastewater. Treating wastewater with oxygen decreases carbon compounds at the expense of energy to move carbon and oxygen to be in contact with each other. Anaerobic digestion of wastewater can reduce the cost by utilizing microbes to treat high amounts of carbon in wastewater without the need for extensive oxygen requirement. With a proper balance of nutrients, microbes also produce methane, a renewable energy source. It has been suggested that microalgae be utilized to help balance the nitrogen content of wastewater for treatment by microbes. One challenge with the use of algae is the initial breakdown of algae cells. Using a digester with microorganism that can produce methane and decompose algae could enhance production of methane from the digestion of algae. The combination of wastewater, which is high in carbon content relative to nitrogen, with algae, which is high in nitrogen, could provide the balance needed for the microbes to treat wastewater and provide methane. A biomethane potential test was used to compare the ability of two microbe communities, facultative lagoon sediment and anaerobic digester sludge to digest algae. Each microbe community treated dairy, swine, municipal, and petrochemical wastewater augmented with algae and acetate. The ability to degrade augmented wastewater and produce methane was determined by measuring the volume and composition of biogas produced over time. Both treatments were successful in production of methane. Facultative lagoon sediment showed more methane produced per carbon dioxide than anaerobic digester sludge.
2

Anaerobic co-digestion of food and algal waste resources

Cogan, Miriam Lucy January 2018 (has links)
Anaerobic digestion is a key energy and resource recovery technology. This work investigated potential organic waste resources to co-digest with household food waste (HFW) to stabilise the process and future-proof feedstock availability. This included novel feedstock macroalgae (seaweed) waste (SW). Hydrothermal (autoclave) pretreatment was also investigated to optimise energy recovery from HFW and SW. Preliminary experiments investigated the behaviour of HFW co-digested with either a green waste (GW) or paper waste (PW), using a batch-test laboratory scale and systematic approach with a revised waste mixture preparation method. Following preliminary trials, the co-digestion of HFW/SW was investigated using an air-dried SW mixture. Batch experiments to determine the biomethane potential (BMP) at different ratios of HFW to SW were set up. Co-digesting HFW and SW at ratio 90:10 (d.w.) achieved a BMP similar to HFW alone (252±13 and 251±1 cm3 g-1 VS, respectively), and a peak methane yield for HFW:SW (90:10) at day 12 of 69±3% compared to a peak methane yield for HFW at day 19 of 70±3%. Addition of SW optimised the C/N ratio, increased concentrations of essential micronutrients and produced an overall increase in reaction kinetics. Concentrations of SW ≥25%, associated with high sulphur levels, reduced final methane productivity. Analysis of the macroalgae strains L. digitata, U. lactuca and F. serratus from the SW mixture was carried out to compare mono-digestion and co-digestion with HFW at a 90:10 ratio and the effect of autoclave pretreatment at 136°C. Co-digestion had a positive impact on methane yields for U. lactuca and F. serratus, whilst autoclave pretreatment had no significant impact on the SW strains When results were modelled for a 320 m3 anaerobic digester treating 8m3 feed per day the theoretical energy balance showed that optimal energy production from pretreated HFW at 8.09 GJ/day respectively could be achieved. To verify the suitability of using macroalgae, known to readily uptake polycyclic aromatic hydrocarbons (PAH), toxicity tests were used to determine the impact of phenanthrene sorbed by U. lactuca on the AD process. Despite U. lactuca’s ability to biosorb phenanthrene in under 2 hours, no impact on the AD process was observed. Overall, results of this study demonstrated that co-digestion of HFW and SW, at batch laboratory scale, provide a viable and sustainable waste revalorisation solution. In addition, low temperature autoclave pretreatment increased methane production (p=0.002) from the AD of HFW.
3

The effect of thermal pre-treatment and waste paper addition to biomethane potential of macroalgae Saccharina latissima / Thermal pre-treatment and waste paper addition to biomethane potential of Saccharina latissima

Tandiyoputri, Gadis January 2018 (has links)
As a steady renewable energy technology, biogas is a viable alternative to reduce our dependency to fossil fuels and to prevent severe climate change. Biogas potential can be improved through combining different types of substrate and inoculum, as well as through substrate pre-treatments. This study aims to observe and explore the potential of macroalgae Saccharina latissima as a promising new source in renewable energy technology. The biomethane potential of macroalgae in mixture with additional substrate of mixed waste paper will be studied as a mean to improve the biogas yield. It will also compare the biomethane results of the macroalgae and the mixed substrate (macroalgae plus waste paper) exposure to non-thermal and thermal pre-treatment. In the experiment, the ratio of 3 : 1 for gr VS inoculum : gr VS substrate is used in a quantitative BMP test up to 25 days of incubation. The substrate was pre-treated mechanically (blended) into slurry and thermally through pre-heating at high temperature (130°C, 45 minutes) before digested by the inoculum. In the end of incubation period at STP (0°C and 1 atm), the highest cumulative methane yield of 260.91 Nml CH4/gr VS substrate was achieved by sample in Var – I, while the control has cumulative methane yield of 50.52 Nml CH4/gr VS. Thermally pre-treated samples resulted in lower BMP yields than the ones which were not thermally pre-treated. Through the ANOVA t-test of the methane volume and biomethane potential (BMP) yields, it is concluded that the thermal pre-treatment and waste paper addition only give little effect to biomethane production from macroalgae.
4

The effect of thermal pre-treatment and waste paper addition to biomethane potential of macro algae Saccharina lattissima

Tandiyoputri, Gadis January 2018 (has links)
As a steady renewable energy technology, biogas is a viable alternative to reduce our dependency to fossil fuels and to prevent severe climate change. Biogas potential can be improved through combining different types of substrate and inoculum, as well as through substrate pre-treatments. This study aims to observe and explore the potential of macroalgae Saccharina latissima as a promising new source in renewable energy technology. The biomethane potential of macroalgae in mixture with additional substrate of mixed waste paper will be studied as a mean to improve the biogas yield. It will also compare the biomethane results of the macroalgae and the mixed substrate (macroalgae plus waste paper) exposure to non-thermal and thermal pre-treatment. In the experiment, the ratio of 3 : 1 for gr VS inoculum : gr VS substrate is used in a quantitative BMP test up to 25 days of incubation. The substrate was pre-treated mechanically (blended) into slurry and thermally through pre-heating at high temperature (130°C, 45 minutes) before digested by the inoculum. In the end of incubation period at STP (0°C and 1 atm), the highest cumulative methane yield of 260.91 Nml CH4/gr VS substrate was achieved by sample in Var – I, while the control has cumulative methane yield of 50.52 Nml CH4/gr VS. Thermally pre-treated samples resulted in lower BMP yields than the ones which were not thermally pre-treated. Through the ANOVA t-test of the methane volume and biomethane potential (BMP) yields, it is concluded that the thermal pre-treatment and waste paper addition only give little effect to biomethane production from macroalgae.
5

Treatment of Small-Scale Brewery Wastewater: Anaerobic Biochemical Methane Potential (BMP) Trials and Moving Bed Biofilm Reactor (MBBR) Field Study

Wusiman, Apiredan 02 June 2021 (has links)
As the microbrewery industry expands, disposal of brewery wastewater is becoming more of a concern, both for brewery operators and for local municipal wastewater authorities. Brewery wastewater is characterized as containing high strength organics and high variability in both organic and hydraulic loading. This high variability increased the challenge of treating brewery wastewater properly. Therefore, it is significant for optimizing the operation condition for the small-scale wastewater treatment system. This study conducted a batch study and a field study for optimizing a craft brewery on-site wastewater treatment system, which is equipped with two moving bed biofilm reactors (MBBR). In the batch study, a two-factor Box-Wilson central composite design (CCD) was adopted to find optimum biomethane production conditions for the digestion of brewery wastewater with a dairy manure inoculum. The effects of two major influencing factors of temperature (T) (25-49°C) and brewery wastewater concentration (BWC) (2-9 g VS/L) on biochemical methane potential (BMP) (CH₄ yield) and CH₄ maximum production rate (Rmax) were evaluated by applying response surface methodology (RSM). All of the trials presented a high organic removal efficiency with volatile solid (VS) 82-91%, soluble chemical oxygen demand (sCOD) 77-88%, and total chemical oxygen demand (tCOD) between 47% -76%. The experiment result suggested that the first-order kinetic rate constant and biogas content (methane percentage in the biogas) can be affected by the temperature. The mesophilic regime had the highest average rate constant, and the psychrophilic regime rate constant was significantly lower than the mesophilic and thermophile regime. The conditions in the thermophile range present a high variability for the first-order rate constant. The methane ratio in the biogas increased and stabilized by the operation time. Mesophilic and thermophilic regimes obtained a stabile biogas content around 25 days, and the psychrophilic regime spent extra time to stabilized. At the end of the anaerobic digestion, the psychrophilic, mesophilic, and thermophilic regimes had an average methane percentage of 47%,65%, and 67% respectively. Optimum BMP and Rmax were achieved under conditions of 49 °C and BWC of 5g VS/L. Correspondingly, the BMP and Rmax were 141.40 mL CH₄/g VS added and 36.5 mL CH₄/ day, respectively. However, by pursuing stability the preferable operational condition T=35℃ and BWC=5 g/L is recommended, at this condition methane yield is 110.07 CH₄/g VS added and maximum methane daily production is 28.06 CH₄/ day, which is similar to the maximum result. In field study, an on-site brewery wastewater treatment system equipped with two MBBR reactors was evaluated from October 12th, 2018 to February 10th, 2020 in Beau`s All-Natural Brewing Company, Vankleek Hill, Ontario, Canada. The aim of the study was to characterize the wastewater production (flow and organic loading rate), evaluate the operating conditions and performance of the MBBR system, and recommend improvements. Discharge from the brewery is highly variable for both organic and hydraulic loading with flow balancing recommended. The MBBR full-scale reactors operated at relatively stable conditions at a surface area loading rate (SALR) of less than 25 g/m2.d and dissolved oxygen (DO) greater than 2mg/L. Kinetic rate constants for suspended growth and attached growth biomass in the reactors were found to be similar at 0.0764-0.0908 h-1, however, a much larger attached growth mass in the reactors suggests that only a fraction of the attached growth biofilm is active. Effluent recycle was shown to be effective at controlling filamentous bacteria (type-0041) sludge bulking, reducing suspended solid concentration, and sCOD concentration.
6

Comparison of Pre- and Post-treatments of Sugarcane Industry By-products to Increase Biomethane Production

Huang, Baitong January 2020 (has links)
Even though the Brazilian ethanol and sugar production system (based on sugarcane industry) have been providing large amounts of bioenergy, the extensive amounts of organic wastes generated cannot be ignored when it comes to sustainability. Using these biomasses to produce biomethane through anaerobic digestion has been proven as a promising way to tackle this issue. This study investigated the biomethane potential of the co-digestion of these biomasses: SF (sugarcane straw : filter cake = 8:2), SFV (sugarcane straw : filter cake : vinasse = 1:4:45), and D (digestate separated from AD of SFV). Three treatments autoclaving (AU), alkaline (AL) treatment using 6% (w/w) NaOH and the combination of these two (AUAL) were then conducted on SF and SFV as pre-treatments; on D as post- treatments. In the biomethane potential tests of untreated material, the highest methane yield was achieved by SFV with 275.28 ± 11 N ml CH4/g VS, followed by SF with 223.25 ± 10 N ml CH4 g-1 VS, substrate D also resulted in a methane potential of 144.69 ± 2 N ml CH4 g-1 VS. As pre-treatments, AL and AUAL both showed increase in methane yield (between 36.0% and 49.1%) and methane production rate. As post-treatments, AU, AL and AUAL showed distinctive results in methane production, with 33.8%, 99.8% and 128.8% increase, respectively. In comparison with pre-treatment, post-treatment showed a better performance in increasing methane production. The following feeding experiments performed in continuous stirred-tank reactors showed that AL treatment led to an average of 248% increase in methane yield. / Sugarcane waste: towards a zero C emission in the Brazilian bioenergy sector
7

The Effect of a Trace Element Supplement on the Biomethane Potential of Food Waste Anaerobic Digestion

Graff, Kelly Mackenzie 15 June 2022 (has links)
Food waste is a desirable feedstock for anaerobic digestion because it is high in moisture and is an easily degradable material. However, mono-digestion of food waste often fails due to the accumulation of volatile fatty acids. Supplementing trace elements is one strategy to combat this issue. This study examined the effect of supplementing trace elements (iron, nickel, selenium, molybdenum, magnesium, zinc, calcium, copper, manganese, cobalt) on the methane yield and organic waste destruction of anaerobically digested food waste. Methane yield of food waste with and without the inorganic salt trace element was determined by the gas density-based biomethane potential method at mesophilic (37°C) conditions over 30 days. The three treatments were inoculum only, food waste and inoculum, and food waste and inoculum with an added trace element solution. There was no significant difference between treatments in terms of waste stabilization (percent volatile solids, total solids, and total chemical oxygen demand reduction) between treatments. The average cumulative biogas produced was 41% higher, and the average total cumulative methane produced was 23% higher in the treatment with the trace element supplement. Mean methane yield was not different (p > 0.05) between treatments over the 30 days, and there was no difference (p > 0.05) in biomethane potential between treatments. In addition, greenhouse gas reduction potential was estimated from food waste streams in Montgomery, VA using anaerobic digestion. The purpose of this work was to (1) estimate the total mass of food waste produced in Montgomery, VA in a year, (2) use the results from the biomethane potential analyses to inform the sizing of a theoretical community digester in Montgomery, VA, and (3) estimate the greenhouse gas reduction potential of anaerobically digesting the food waste instead of sending it to landfill. Greenhouse gas reduction was calculated using the Climate Action Reserve Organic Waste Digestion Project Protocol guidelines. The greenhouse gas reduction potential was estimated as 6,532 tonnes of carbon dioxide equivalent per year (tCO2e/year), with approximately 693 m3 methane produced per day. In one year, the digester would generate an estimated 7370 kWh of energy which has the potential to power 149 homes for a year in Montgomery, VA. In addition, 4130 tonnes/year of composted digestate would be available as fertilizer for surrounding farms. / Master of Science / Currently, about one-third of the entire U.S. food supply is lost or wasted. A large portion of that food waste is sent to landfills, where it produces methane, a greenhouse gas. Instead, food waste can be broken down to produce biogas during anaerobic digestion. Anaerobic digestion is a process in which microorganisms break down organic materials in the absence of oxygen to produce biogas and digestate, a material used as a soil amendment or fertilizer. However, anaerobically digesting food waste often leads to process instability and failure due to a buildup of undesirable intermediates. Microorganisms in anaerobic digestion require certain trace elements (i.e., iron, copper) that food waste often lacks; therefore, supplementing key trace elements may improve the anaerobic digestion of food waste. This research aimed to assess the effect of supplementing key trace elements (iron, copper, zinc, calcium, magnesium, nickel, manganese, selenium, molybdenum, cobalt) on organic matter degradation and methane yield. Methane yield of food waste with and without the inorganic salt trace element was determined by the gas density-based biomethane potential method at mesophilic (37°C) conditions over 30 days. The average cumulative biogas produced was 41% higher, and the average total cumulative methane produced was 23% higher in the bottles containing a trace element supplement. No significant difference was seen in the two groups when comparing organic matter degradation. These results demonstrate that supplementing trace elements can improve biogas and methane production. Greenhouse gas reductions from anaerobically digesting food waste instead of sending it to landfills were determined for Montgomery, VA. The results from the biomethane potential test informed the design of a theoretical community digester. Greenhouse gas reduction was calculated using the Climate Action Reserve Organic Waste Digestion Project Protocol equations. The greenhouse gas reduction was determined as 6,532 tonnes of carbon dioxide equivalent per year (tCO2e/year). The digester would produce approximately 693 m3 methane/day, which has the potential to power 149 homes for a year in Montgomery, VA. In addition, 4130 tonnes/year of compost would be produced and available as a fertilizer for surrounding farms.
8

Méthodologie de prédiction et d’optimisation du potentiel méthane de mélanges complexes en co-digestion / Methodology to predict and optimize methane potential of complex mixtures treated by anaerobic co-digestion

Bassard, David 20 February 2015 (has links)
La co-digestion anaérobie (CoDA) des substrats agro-industriels s’inscrit pleinement dans les objectifs sociétaux d’une gestion optimisée des agroressources, d’une réduction des impacts anthropogéniques, ainsi que d’un développement des énergies renouvelables. Toutefois, en considérant les verrous industriels et scientifiques, il est apparu que la problématique méthodologique, relative à l’étude et à l’optimisation, était primordiale dans l’amélioration des performances méthanogènes en CoDA. En cela, il s’est avéré que le principal actionneur pour l’optimisation de la CoDA soit la formulation du mélange en substrats et co-substrats constituant l’intrant du digesteur. Ainsi, les travaux de thèse étaient inscrits dans un double objectif, industriel et scientifique, dont les résultats ont permis de (i) mettre en œuvre des méthodes simples, peu chronophages et surtout peu coûteuses, pour la caractérisation des intrants et le suivi de la CoDA, (ii) déterminer la relation fondamentale entre la formulation du mélange de substrats et son potentiel biométhanogène, (iii) développer des outils de prédiction du potentiel biométhanogène des mélanges de substrats, ainsi que des biodégradabilités globales et spécifiques de ces derniers, (iv) améliorer la compréhension des interactions entre les substrats codigérés et le consortium microbien de digestion, ainsi que la capacité de ce dernier à s’adapter aux diverses charges organiques qui lui sont appliquées (capacité homéostasique). / The co-digestion of agro-industrial substrates in anaerobic conditions falls within the objectives of an optimized management of agricultural resources along with reduction of anthropogenic impacts and development of renewable energies. Considering scientific and industrial bottlenecks from literature review, it could be identified that a methodological approach was the key to an enhanced understanding of anaerobic co-digestion. Ultimately, formulation of the substrate and co-substrates (digestor’s inputs) appeared to be the main actuator to optimize anaerobic co-digestion. Conciliating both scientific and industrial issues, this thesis led to the following findings : (i) an implementation of simple and cost-saving methods to characterize the inputs of digestor and biogas production, (ii) a determination of fundamental relationship between substrate blend and his biomethane potential, (iii) a development of predictive tools for biomethane potential of substrate blends as well as global and specific biodegradability of substrates, (iv) an enhanced comprehension of first, interactions between codigested substrates and the microbial consortium and second, the adaptation capacity of the microbial consortium to various organic loading (homeostatic capacity).
9

Valorisation énergétique de la biomasse lignocellulosique par digestion anaérobie : Prétraitement fongique aérobie / Energy recovery of lignocellulosic biomass by anaerobic digestion : Aerobic fungal pretreatment

Liu, Xun 18 December 2015 (has links)
La bioconversion en méthane de biomasses lignocellulosiques est l’une des alternatives les plus prometteuses pour la production de méthane issu de la digestion anaérobie. Toutefois, les biomasses lignocellulosiques présentent des caractéristiques bio-physico-chimiques très variables en raison leur composition biochimique et de l’organisation structurale très diverses. Par ailleurs, leur faible biodégradabilité en conditions anaérobie nécessite de les prétraiter avant méthanisation pour optimiser la production de méthane. Ce travail vise à évaluer l’influence des caractéristiques d’une large gamme de substrats lignocellulosiques sur leur biodégradabilité anaérobie et les corrélations entre leurs caractéristiques bio-physico-chimiques et le potentiel biométhanogène, et d’étudier les effets du prétraitement fongique en présence de Ceriporiopsis subvermispora sur le potentiel biométhanogène de biomasses lignocellulosiques sélectionnées dans la présente étude et de caractériser les changements de leurs caractéristiques après le prétraitement fongique. La caractérisation de 36 biomasses lignocellulosiques représentatives d’une large gamme de gisements potentiellement mobilisables a permis de mettre en évidence les corrélations linéaires entre le potentiel biométhanogène des biomasses et certaines de leur caractéristiques bio-physico-chimiques, dont la teneur en lignine et la demande biochimique en oxygène. Les biomasses sylvicoles et agricoles ont montré des caractéristiques distinctes de la biodégradabilité aérobie et anaérobie. Les résultats de prétraitement fongique sur les 5 biomasses ont permis de mettre en évidence que le champignon de pourriture blanche Ceriporiopsis subvermispora réagit distinctement selon la biomasse prétraitée. Pour certaines biomasses, le prétraitement fongique conduit à augmenter significativement la production de méthane et la vitesse de bioconversion en méthane. Cette espèce présente la capacité de dégrader sélectivement la lignine sur certaines biomasses et, sur d’autres, celle de dégrader de manière non-sélective des polysaccharides et des lignines. De plus, pour les deux souches de Ceriporiopsis subvermispora testées, des métabolismes différents ont été mis en évidence sur une même biomasse. Les résultats de compositions et ceux de l’analyse structurale des biomasses (initiales, autoclavées, contrôles, et prétraitées par Ceriporiopsis subvermispora) ont montré que leur structure peut être modifiée sans toutefois observer une transformation significative de leur composition biochimique. / Bioconversion to methane lignocellulosic biomass is one of the most promising alternatives for the production of methane from anaerobic digestion. However, lignocellulosic biomass has various bio-physicochemical characteristics due to their biochemical composition and diverse structural organization. Moreover, their low biodegradability in anaerobic condition requires pretreatment before methanation to optimize methane production. This work aims to evaluate the influence of the characteristics of a wide range of lignocellulosic substrates on their anaerobic biodegradability and correlations between their bio-physical-chemical characteristics and biomethane potential, and study the effects of fungal pretreatment in the presence of Ceriporiopsis subvermispora on the biogas potential of lignocellulosic biomass selected in this study and characterize their changes of their characteristics before and after the fungal pretreatment. The characterization of 36 representative lignocellulosic biomass of a wide range of potentially mobilized deposits allowed to highlight the linear correlations between biomethane potential of biomass and some of their bio-physical-chemical characteristics, of which the lignin content and biochemical oxygen demand. The forest and agricultural biomass exhibited distinct characteristics of the aerobic and anaerobic biodegradability. The results of fungal pretreatment of the 5 biomass indicated that the white rot fungus Ceriporiopsis subvermispora reacts distinctly depending on the pretreated biomass. For some biomass, fungal pretreatment leads to significant increase of methane production and the bioconversion rate of methane. This species presents the ability to selectively degrade lignin on some biomasses, in others, the ability to non-selectively degrade polysaccharides and lignins. In addition, for both strains of Ceriporiopsis subvermispora tested, different metabolisms were highlighted on the same biomass. The results of compositions and those of the structural analysis of biomass (initials, autoclaved, controls, and pretreated with Ceriporiopsis subvermispora) showed that their structure can be modified without observing a significant transformation of their biochemical composition.
10

Improving methane production using hydrodynamic cavitation as pre-treatment / Förbättrad methanproduktion med hydrodynamisk kavitation som förbehandling

Abrahamsson, Louise January 2016 (has links)
To develop anaerobic digestion (AD), innovative solutions to increase methane yields in existing AD processes are needed. In particular, the adoption of low energy pre-treatments to enhance biomass biodegradability is needed to provide efficient digestion processes increasing profitability. To obtain these features, hydrodynamic cavitation has been evaluated as an innovative solutions for AD of waste activated sludge (WAS), food waste (FW), macro algae and grass, in comparison with steam explosion (high energy pre-treatment). The effect of these two pre-treatments on the substrates, e.g. particle size distribution, soluble chemical oxygen demand (sCOD), biochemical methane potential (BMP) and biodegradability rate, have been evaluated. After two minutes of hydrodynamic cavitation (8 bar), the mean fine particle size decreased from 489- 1344 nm to 277- 381 nm (≤77% reduction) depending of the biomasses. Similar impacts were observed after ten minutes of steam explosion (210 °C, 30 bar) with a reduction in particle size between 40% and 70% for all the substrates treated.  In terms of BMP value, hydrodynamic cavitation caused significant increment only within the A. nodosum showing a post treatment increment of 44% compared to the untreated value, while similar values were obtained before and after treatment within the other tested substrates. In contrast, steam explosion allowed an increment for all treated samples, A. nodosum (+86%), grass (14%) and S. latissima (4%). However, greater impacts where observed with hydrodynamic cavitation than steam explosion when comparing the kinetic constant K. Overall, hydrodynamic cavitation appeared an efficient pre-treatment for AD capable to compete with the traditional steam explosion in terms om kinetics and providing a more efficient energy balance (+14%) as well as methane yield for A. nodosum. / Det behövs innovativa lösningar för att utveckla anaerob rötning i syfte att öka metangasutbytet från biogassubstrat. Beroende på substratets egenskaper, kan förbehandling möjliggöra sönderdelning av bakterieflockar, uppbrytning av cellväggar, elimination av inhiberande ämnen och frigörelse av intracellulära organiska ämnen, som alla kan leda till en förbättring av den biologiska nedbrytningen i rötningen. För att uppnå detta har den lågenergikrävande förebehandlingsmetoden hydrodynamisk kavitation prövats på biologiskt slam, matavfall, makroalger respektive gräs, i jämförelse med ångexplosion. Effekten på substraten av dessa två förbehandlingar har uppmäts genom att undersöka distribution av partikelstorlek, löst organiskt kol (sCOD), biometan potential (BMP) och nedbrytningshastigheten. Efter 2 minuters hydrodynamisk kavitation (8 bar) minskade partikelstorleken från 489- 1344 nm till 277- 281 nm (≤77 % reduktion) för de olika biomassorna. Liknande påverkan observerades efter tio minuters ångexplosion (210 °C, 30 bar) med en partikelstorlekreducering mellan 40 och 70 % för alla behandlade substrat. Efter behandling med hydrodynamisk kavitation, i jämförelse med obehandlad biomassa, ökade metanproduktionens hastighetskonstant (K) för matavfall (+65%), makroalgen S. latissima (+3%), gräs (+16 %) samtidigt som den minskade för A. nodosum (-17 %). Förbehandlingen med ångexplosion ökade hastighetskonstanten för S. latissima (+50 %) och A. nodosum (+65 %) medan den minskade för gräs (-37 %), i jämförelse med obehandlad biomassa. Vad gäller BMP värden, orsakade hydrodynamisk kavitation små variationer där endast A. nodosum visade en ökning efter behandling (+44 %) i jämförelse med obehandlad biomassa. Biomassa förbehandlade med ångexplosion visade en ökning för A .nodosum (+86 %), gräs (14 %) och S. latissima (4 %). Sammantaget visar hydrodynamisk kavitation potential som en effektiv behandling före rötning och kapabel att konkurrera med den traditionella ångexplosionen gällande kinetik och energibalans (+14%) samt metanutbytet för A. nodosum.

Page generated in 0.4965 seconds