131 |
Imagerie 3D résolue en temps pour l'aide au diagnostic médical : développement d'un système de microscopie de fluorescence multipoints sous excitation à deux photons.Deniset-Besseau, Ariane 08 February 2008 (has links) (PDF)
L'utilisation de la microscopie confocale et biphotonique de fluorescence est de plus en plus répandue dans le domaine biomédical. En effet, l'imagerie d'intensité, de spectre et de durée de vie de fluorescence permettent de détecter, quantifier et imager les composants fluorescents intrinsèques d'un milieu biologique ainsi que les sondes extrinsèques. Dans le cadre du dépistage précoce de cancer, les modes de détection non-invasifs actuellement mis en place manquent de sensibilité pour permettre d'établir de manière fiable un diagnostic. Les médecins ont alors recours à des examens complémentaires, invasifs, comme la biopsie. Dans le cas de notre étude, différentes techniques de microscopie ont été exploitées pour mettre en place une méthode de diagnostic précoce non-invasive de cancer. Nous avons ainsi utilisé conjointement la microscopie confocale résolue spectralement et la microscopie biphotonique pour les images de durée de vie de fluorescence (FLIM). Cette dernière technique a d'ailleurs été récemment optimisée avec la mise en place d'un système d'excitation biphotonique multipoint qui permet d'accélérer significativement la vitesse d'acquisition des images. Il s'agit d'un système optique générant une matrice de 64 faisceaux excitateurs ce qui réduit considérablement le temps d'exposition des échantillons biologiques, les préservant ainsi des photodégradations. Ces techniques, largement complémentaires, ont permis de différencier, sur différents types de cytologies, les cellules présentant une faible malignité des cellules saines en utilisant comme facteur de contraste la fluorescence des entités intracellulaires. Grâce à cette méthode, les cellules de bas grades de malignité ont pu ainsi être identifiées sur des cytologies du col de l'utérus. En s'appuyant sur une démarche expérimentale similaire, un nouveau test a également été élaboré permettant de déceler avant traitement chez un patient une résitance à des polychimiothérapies usuellement utilisées dans le traitement des cancers urothéliaux tel que M-VAC. A l'issu de ce travail, une signature spectroscopique permettant de discriminer les cellules résistantes des cellules sensibles à la polychimiothérapie a pu être identifiée.
|
132 |
Etude structurale d'un complexe de trois protéines de la division du pneumocoque, DivIB, DivIC et FtsLMasson, Soizic 14 November 2008 (has links) (PDF)
FtsL, DivIC et DivIB sont trois protéines membranaires impliquées dans la division bactérienne. Leur fonction n'est pas totalement comprise, mais semble mutuellement dépendante, notamment à travers la formation de complexes. Pour contribuer à la connaissance structurale des protéines de la division bactérienne et apporter des indices sur la fonction des trois protéines citées, une étude structurale a été menée sur un système modèle de protéines recombinantes solubles de S. pneumoniae: FtsL, DivIC et DivIB. La partie extracellulaire de DivIB, un complexe contraint des parties extracellulaires de FtsL et DivIC, et l'interaction entre ce complexe et la partie extracellulaire de DivIB ont été étudiés par plusieurs techniques biophysiques (RMN, SAXS, SANS, BIA par SPR). La partie extracellulaire de DivIB est composée de trois domaines dont le domaine central est structuralement proche de son orthologue chez E. coli, et interagit avec un complexe des parties extracellulaires de DivIC et FtsL, via ce domaine central. Un épitope d'interaction sur ce domaine a été identifié. Les domaines C-terminaux de FtsL et divIC sont essentiels à l'interaction avec la partie extracellulaire de DivIB. Un modèle à basse résolution du complexe de ces trois protéines présente en effet le domaine central de la partie extracellulaire de DivIB à l'extrémité du complexe des parties extracellulaires de DivIC et FtsL. Différents modèles d'association dans la cellule, des protéines DivIB, DivIC et FtsL ont été évalués avec ces nouvelles données structurales.
|
133 |
Des cellules aux tissus : modélisation physique du comportement collectif des cellules embryonnairesKäfer, Jos 05 December 2008 (has links) (PDF)
Pour comprendre comment les propriétés mécaniques des cellules jouent au niveau d'un tissu et déterminent la morphogénèse, il a été proposé que les cellules se comportent comme les bulles de savon, ou comme des molécules dans un liquide. Nous testons numériquement ces analogies entre tissus et systèmes physiques, en collaboration avec des experimentateurs.<br /><br />Dans la rétine de la Drosophile, les cellules ont été comparées aux bulles de savon. On trouve que la ressemblance entre les cellules et bulles de savon n'est pas due à leur propriétés physiques, mais à leur structure collective: les cellules dans un tissu pavent l'espace, comme les bulles dans une mousse, donc elles influencent leur formes entre elles.<br /><br />Le tri spontané des cellules de types différents est souvent comparé à la démixion de liquides. Pour les liquides, ce comportement est produit par des différences d'attraction entre les molécules, alors qu'on trouve que pour les cellules embryonnaires du poisson zèbre la contraction différentielle du cortex des cellules est le facteur le plus important.<br /><br />La compression d'un agrégat de cellules a été analysé comme si c'était une goutte liquide, où les propriétés sont déterminées uniquement par la tension de surface. Mais, les cellules dans un agrégat peuvent se déformer et se réarranger, et des contraintes plutôt solides co-déterminent la forme et les forces de l'agrégat.<br /><br />Ces analogies physiques sont donc incomplètes, mais intéressantes. A partir d'elles, nous proposons ici une description propre aux cellules: un agrégat ou tissu est une collection de cellules vivantes qui peuvent changer leur forme et se réarranger. Cette approche nous permet d'étudier l'effet de l'adhésion cellulaire, la tension corticale, et les fluctuations des cellules sur le comportement collectif et la morphogénèse.
|
134 |
Influence des propriétés mécaniques du substrat sur l'adhésion et la migration cellulaireGhibaudo, Marion 04 December 2008 (has links) (PDF)
L'adhésion et la migration des cellules jouent un rôle important dans de nombreux mécanismes cellulaires qui vont de la morphogenèse à la prolifération tumorale en passant par la réparation des tissus. Il est maintenant bien établi que l'environnement physique et mécanique des cellules a une grande influence sur de nombreuses fonctions cellulaires comme l'adhésion et la migration ainsi que sur leur devenir et donc leur différentiation. Pour contrôler les propriétés de l'environnement cellulaire, nous avons choisi de combiner des méthodes de micro-fabrication issues de la microélectronique aux techniques de biologie cellulaire et moléculaire. Nous nous sommes notamment intéressés à l'influence de la rigidité du support sur la migration cellulaire et les forces mécaniques exercées par les cellules, des fibroblastes, sur la matrice. Pour cela, nous avons utilisé un substrat constitué de micro-piliers flexibles, qui ont servi de micro-capteurs de force. Nous avons montré que les cellules employées adaptent les forces qu'elles exercent sur leur support à la rigidité de ce dernier. Nous avons ensuite étudié l'influence de la topographie du substrat sur la migration cellulaire. Nous avons pour cela également utilisé des micro-piliers, mais dont le diamètre est 5 à 10 fois supérieur aux précédents. Les cellules, en migrant, rencontrent donc alternativement des surfaces lisses et rugueuses. Nous avons montré que dans ces environnements, les cellules adoptent un comportement s'approchant de celui observé dans un gel tridimensionnel et que le noyau joue un rôle dans cette migration. Enfin, nous avons abordé l'étude de l'étalement cellulaire dans ces environnements texturés.
|
135 |
Dynamique de billes d'agarose et de vésicules géantes en adhésion sous un écoulement de cisaillement.Vézy, Cyrille 07 September 2007 (has links) (PDF)
L'adhésion est un processus fondamental qui influence le déclenchement et le déroulement des processus pathologiques, notamment concernant les cellules circulantes aux parois vasculaires (réaction inflammatoire dans le flux sanguin). Sa compréhention nécessite la connaissance des mécanismes biologiques impliqués mais aussi d'un cadre physique de description du mouvement sous flux d'objets déformables en interaction avec une paroi. Notre travail utilise des systèmes modèles (vésicules, billes) pour identifier le rôle de paramètres de l'adhésion (densité, mobilité des ligands membranaires, déformabilité) sur le mouvement. Le système d'interaction développé est la chélation entre un ion nickel et deux histidines. L'imidazole, partie complexante de l'histidine, va permettre de réguler la force de l'interaction. Nous avons décrit le mouvement des lipides membranaires sous flux dans le cas de vésicules en interaction forte. On a mis en évidence la présence d'un flux surfacique dépendant de la forme de l'objet et de la force de l'adhésion. En régulant l'adhésion spécifique faible de billes, nous montrons la spécificité de l'interaction, des phénomènes originaux de capture, de détachement et de déplacement en adhésion sous écoulement de cisaillement.
|
136 |
Repliement des protéines et formation de fibres amyloïdes.<br />Le cas de l'alpha-lactalbumineBlanchet, Clement 23 June 2008 (has links) (PDF)
Le repliement des protéines est un des problèmes centraux de la biologie. Il s'agit de comprendre comment la chaîne polypeptidique d'une protéine se replie pour acquérir sa structure tridimensionnelle biologiquement active. Il a été démontré dans les années 60 que la forme repliée de la protéine est le plus stable d'un point de vue thermodynamique et qu'il est défini par la structure primaire. La réaction de repliement correspond ainsi à la dernière étape de l'utilisation de l'information contenue dans l'ADN. Cependant, Il est possible que les protéines se replient mal et interagissent entre elles pour former des fibres amyloïdes. Ce sont des agrégats structurés impliqués dans plusieurs maladies comme la maladie d'Alzheimer, de Parkinson... <br>Ces phénomènes sont étudiés ici dans le cas de l'alpha-lactalbumine, une protéine du lait qui possède un site de liaison pour le calcium. Le repliement est tout d'abord étudié en présence de métaux se liant au site du calcium. Ces expériences sont couplées à des expériences de dénaturation thermiques pour caractériser le rôle de la fixation des métaux sur les différents états de la protéine et son influence sur la cinétique de repliement.<br>La réaction est ensuite caractérisée en absence d'ion métallique. Elle est alors beaucoup plus lente et complexe. Différentes techniques spectroscopiques sont utilisées. Les résultats obtenus permettent de proposer un schéma réactionnel selon lequel un état précurseur de fibres amyloïdes est transitoirement peuplé. Enfin, pour compléter cette étude, les effets des interactions entre protéines sur la formation de fibres amyloïdes ont été étudiés pour différentes concentrations en sel.
|
137 |
Mécanisme catalytique de la protochlorophyllide oxydoréductase : étude du couplage entre activité fonctionnelle et dynamique de la protéineDurin, Guillaume 21 December 2005 (has links) (PDF)
La protochlorophyllide oxydoréductase catalyse la réduction de la protochlorophyllide en chlorophyllide, pénultième étape de la synthèse de la chlorophylle chez les plantes. Cette réaction présente la particularité d'être photoactivable. Après le déclenchement de la réaction par la lumière, plusieurs intermédiaires réactionnels apparaissent, présentant des signatures spectroscopiques distinctes. L'étude du mécanisme catalytique à basse température permet d'isoler chacun de ces intermédiaires et de les caractériser. <br /><br />Nous avons d'abord mis en évidence que la longueur d'onde et l'intensité de la source de lumière choisie pour déclencher la réaction à basse température influait directement sur le mécanisme réactionnel suivi, révélant par la même l'existence d'une « branche morte » de la réaction, dont le produit n'est pas la chlorophyllide.<br /><br />Nous avons ensuite suivi par spectroscopie d'absorption et de fluorescence le déroulement des deux mécanismes réactionnels : la branche physiologique et la « branche morte ». Ces études ont été réalisées entre 100 et 293 K dans des solutions de viscosités différentes, afin de faire varier la température de transition vitreuse (Tg) du solvant. En suivant en parallèle Tg et la formation des différents états intermédiaires, nous avons montré que les étapes initiales du premier mécanisme étaient couplées avec cette transition alors qu'elles en étaient indépendantes pour le second. Ces travaux ont permis de mettre en évidence l'existence de différents types de mouvements régissant l'activité fonctionnelle de la protéine, certains couplés avec le solvant (« bulk solvent ») et d'autres de type harmonique, indépendants du solvant.
|
138 |
Cinétique de détachement de microorganismes modèles adsorbés sur des surfaces d'acier inoxydable : effet de la rugosité et de l'orientation cristallographiqueDemilly, Magali 08 June 2006 (has links) (PDF)
Les phénomènes de bioadhésion de microorganismes sur les aciers inoxydables son fréquents et peuvent entraîner des problèmes de santé publique tels que des infections toxicologiques. En partenariat avec Ugine-Alz, nous nous sommes intéressés, à l'aide d'une chambre à flux radial (Décavé et al. Biophysical Journal, 2002, 82, 2383-95), à l'étude quantitative des cinétiques de détachement de trois microorganismes après adhésion sur des surfaces d'acier inoxydable. Saccharomyces cerevisiae (levure), Escherichia coli (Gram-), et Staphylococcus epidermidis (Gram+). Les aciers inoxydables utilisés sont des échantillons polis miroir et polis attaqués avec des tailles de grain et des profondeurs d'attaque des joints de grain différentes. L'utilisation de ces différents états de surface ne modifie pas la valeur de la contrainte nécessaire pour détacher 50% des microorganismes (seuil de détachement). Par contre, la profondeur d'attaque des joints de grain et la taille de grain accélèrent la cinétique de détachement de S. cerevisiae et ralentissent celle d'E. coli. Enfin, une adhésion préférentielle a été mise en évidence, pour les trois microorganismes, sur les grains d'orientation cristallographique <001> (Demilly et al., Colloids and Surfaces B, in press, 2006).
|
139 |
Les colloïdes magnétiques et leur utilisation<br />biophysique dans la détection, le guidage et le<br />suivi cellulaire in vitro et in vivo.Riviere, Charlotte 22 September 2005 (has links) (PDF)
Les colloïdes utilisés sont des suspensions de nanoparticules magnétiques (nanocristaux d'oxyde de fer de 10 nm) chargées négativement en surface, qui s'adsorbent de façon aspécifique sur la membrane de la plupart des types cellulaires, où elles sont spontanément internalisées dans des vésicules intracellulaires. Les nouvelles propriétés magnétiques de cellules thérapeutiques ainsi marquées et implantées au sein de l'organisme permettent leur suivi in vivo de manière non-invasive par IRM. Nous avons ainsi pu suivre des cellules musculaires lisses dans un modèle d'anévrisme et des explants musculaires dans un modèle d'incontinence urinaire. Dans chaque cas, l'évolution des propriétés de contraste des cellules marquées au cours du temps a été étudiée in vitro et in vivo. Ce marquage magnétique nous a aussi permis de soumettre les cellules à des forces magnétiques et analyser leur influence sur la migration cellulaire in vitro et la faisabilité d'un guidage magnétique in vivo.
|
140 |
contrôle de la polarité des cellules adhérentesThéry, Manuel 24 January 2006 (has links) (PDF)
Les travaux effectués au cours de cette thèse et présentés dans ce manuscrit consistent en l'utilisation de micro-patrons adhésifs pour l'étude de l'organisation spatiale des organites intracellulaires. Nous avions comme modèle de travail la compartimentation et la polarisation des cellules au sein des tissus. Dans cette situation, les cellules n'adhèrent pas de façon homogène et isotrope à leur environnement. Au contraire, elles s'attachent à leur voisines et à la matrice extracellulaire, en des endroits particuliers, grâce à des complexes transmembranaires, les adhésions. Ces adhésions sont une des bases structurales de la construction du cytosquelette. Leur distribution spatiale peut être anisotrope, et parfois asymétrique, ce qui guide la polarité intrinsèque des cellules. <br />Nous avons utilisé la technique d'impression par micro-contact pour manipuler la forme des cellules et la distribution de leurs adhésions. Les cellules adoptent l'enveloppe convexe du patron adhésif quelle que soit sa géométrie. Si, par exemple, les cellules sont contraintes de s'attacher à un T ou un V, sans pouvoir établir de contact en dehors de ce patron, elles adopteront dans les deux cas la même forme triangulaire. Nous avons utilisé cette propriété pour imposer aux cellules des formes identiques sur des patrons adhésifs différents afin d'analyser le rôle spécifique de la distribution des adhésions sur l'organisation du cytosquelette et des compartiments intracellulaires.<br /> Nos mesures montrent que les cellules développent des tensions élevées dans les filaments d'actine, assemblés en fibres de stress, au-dessus des zones non adhésives. Sur les zones adhésives, la tension est plus faible, et la polymérisation de l'actine en un réseau branché induit la formation de protrusions membranaires. La localisation des protrusions est donc complémentaire de celle des zones contractiles.<br />Cette polarisation du système actine dirige le recrutement de certaines protéines dont l'activité influence la dynamique des microtubules. La croissance des microtubules en contact avec le cortex cellulaire est modulée différemment selon que l'actine forme des fibres de stress ou un réseau branché. Cependant, quel que soit le comportement des extrémités du réseau de microtubules à la périphérie, le centre du réseau, le centrosome, se maintient toujours au centre de la cellule. Le noyau est exclu de ce centre et se positionne vers les zones de contraction. Ainsi, à l'intérieur de la cellule, l'orientation de l'axe noyau-centrosome répond à l'asymétrie établie en périphérie.<br />La polarité du cortex est conservée pendant la division cellulaire ou mitose. Le corps cellulaire, qui s'est arrondi à l'entrée en mitose, est maintenu en contact avec le substrat adhésif par des fibres de rétraction riches en actine. Les mesures expérimentales de l'orientation des divisions, sur différents patrons adhésifs, révèlent que la distribution spatiale des ancrages de ces fibres sur la cellule guide l'orientation du fuseau mitotique, et par conséquent, le plan de division des cellules. En effet, les pôles du fuseau se positionnent en face des zones corticales où sont arrimées les fibres de rétraction, indépendamment de la forme qu'avait la cellule avant l'entrée en mitose. <br /> Il existe des moteurs moléculaires ancrés dans le cortex des cellules et capables de tirer sur les microtubules astraux émanant des pôles du fuseau. En faisant l'hypothèse que ces moteurs ne sont activés que dans les zones où se situent les fibres de rétraction, on peut établir un modèle physique permettant de rendre compte de toutes les observations expérimentales effectuées.
|
Page generated in 0.0803 seconds