• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 16
  • 2
  • 1
  • 1
  • Tagged with
  • 54
  • 33
  • 12
  • 11
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Mechanics of cell growth and tissue architecture in plants

Jafari Bidhendi, Amirhossein 04 1900 (has links)
Le développement des plantes nécessite la coordination des mécanismes de différenciation des cellules méristématiques en cellules hautement spécialisées: la division, la croissance et la formation de la géométrie cellulaire. La différenciation et la morphogenèse cellulaires sont étroitement liées et régulées par les propriétés mécaniques de la paroi cellulaire. Les mécanismes conduisant à l’émergence de diverses formes et fonctions des tissus végétaux sont complexes et encore peu compris. Ma thèse de doctorat approfondie les principes mécaniques à la base de la formation des cellules épidermiques ondulées. Je me suis également penché sur l’étude des avantages mécaniques que confèrent les motifs imbriqués. Les cellules épidermiques sont constituées de deux parois cellulaires périclines parallèles reliées par des parois anticlines. Aux jonctions, les cellules épidermiques forment des cavités et des saillies imbriquées les unes aux autres. Des images en 3D, prises en microscopie confocale, de cotylédons marqués par des fluorophores spécifiques à la cellulose montrent une déposition accrue de cellulose au niveau des cavités des parois périclines s’étendant le long des parois anticlines. Le marquage des cotylédons par COS488 démontre également une plus grande abondance de pectines dé-estérifiées aux mêmes sites. J'ai développé des modèles par éléments finis de la déformation de la paroi cellulaire et simulé les disparités biochimiques en alternant les régions plus rigides à travers et au long des parois périclines des deux côtés d'une paroi anticline. Le modèle montre que les parois rigidifiées non déformables se développent en cavités lorsque la pression interne étire la paroi cellulaire. Le modèle suggère également la présence de contraintes mécaniques plus élevées au niveau des saillies. Les résultats du modèle indiquent qu'une boucle de rétroaction positive entre la contrainte et la rigidité de la paroi cellulaire générerait les formes ondulées à partir de différences infinitésimales de rigidité ou de contrainte de la paroi cellulaire. En outre, le modèle suggère que des événements de flambage stochastiques peuvent initier la morphogenèse des cellules. On a longtemps émis l'hypothèse que le motif imbriqué de cellules épidermiques améliore l'adhérence cellule-cellule et donc la résistance de traction de l'épiderme. L'étirage des feuilles d'Arabidopsis de type sauvage ou du mutant any1 (caractérisé par une réduction de l'ondulation cellulaire) n'a montré aucun détachement cellulaire en cas de rupture du tissu. J'ai émis l'hypothèse que les jonctions des cellules ondulantes renforcent la résistance de l'épiderme contre la propagation de fissures. J'ai observé une grande anisotropie dans la réponse mécanique à la rupture de l'épiderme d'oignon selon l’orientation des cellules. Les fissures qui suivent l’alignement des cellules se propagent sans trop de résistance, entraînant une rupture fragile du tissu. Ceci découlerait de la propagation de la ligne de rupture par suite du détachement des cellules. Les fissures se propagent difficilement lorsqu’elles sont perpendiculaires à l'axe principal des cellules. En fracturant des feuilles dont les cellules épidermiques sont ondulées, j'ai remarqué que les fissures se propageaient, par intermittence, à la fois au niveau des jonctions de la cellule et de la paroi cellulaire. J'ai émis l'hypothèse que ce motif de fracture d'épiderme à cellules ondulées se caractérisait par une augmentation de la résistance à la fracture. Pour n’étudier que les effets de la géométrie des cellules sur cette résistance, j’ai éliminé le rôle que jouerait l’anisotropie des matériaux en concevant des modèles physiques macroscopiques de l'épiderme. J’ai gravé au laser des motifs cellulaires sur du poly-méthacrylate de méthyle. De cette façon, le matériau isotrope permettait d'étudier uniquement l'effet de la géométrie cellulaire. Alors que la fracturation des spécimens de contrôle sans gravure et des spécimens avec des cellules gravées longitudinalement ont démontré une rupture fragile, une fracturation transversale aux rangées cellulaires, dans les modèles mimant des cellules d’oignon ou des cellules ondulées de cotylédons d’Arabidopsis, a montré une résistance accrue à la fracture. En conclusion, je démontre que la forme ondulée des cellules épidermiques est le résultat d’une distribution alternée de la rigidité dans la paroi cellulaire, un processus qui pourrait être initié par une anisotropie de stress stochastique due au flambement. De plus, ces formes cellulaires augmentent la résistance à la rupture de l'épiderme végétal en le protégeant contre la propagation des fissures; un mécanisme de défense ingénieux pour les surfaces les plus exposées. / Plant development entails cell division, cell growth and shaping, and the differentiation of meristematic cells into highly specialized cell types. Differentiation and cell shape are closely linked and involve the regulation of the mechanical properties of the cell wall. The mechanisms leading to the generation of the diverse array of shapes and functionalities found in plant tissues are perplexing and poorly understood. In my Ph.D. research, I investigated the mechanical principles underlying the formation of wavy leaf pavement cells. Further, I studied the putative mechanical advantage that emerges from the interlocking patterns. Epidermal pavement cells consist of two parallel periclinal walls connected by vertical anticlinal walls. At the borders, wavy pavement cells make interlocking indentations and protrusions. 3D confocal micrographs of cotyledons stained with cellulose-specific fluorophores revealed a significant accumulation of cellulose at the sites of indentation on the periclinal walls extending down the anticlinal walls. Staining the cotyledon samples with COS488 also suggested a higher abundance of de-esterified pectin at these sites. I developed finite element models of the cell wall deformation and simulated the biochemical inhomogeneities by assigning alternately stiffened regions across and along the periclinal walls on two sides of an anticlinal wall. It was observed that the non-deforming stiffened regions develop into sites of indentations when the internal pressure stretches the cell wall. The model also suggested higher stresses to associate with the neck regions. The model results indicate that a positive feedback loop between stress and cell wall stiffness could generate wavy shapes starting from infinitesimally small differences in cell wall stiffness or stress. Further, the model suggests that stochastic buckling events can initiate the cell shaping process. It has been long hypothesized that the interlocking pattern of pavement cells improves cell-cell adhesion and thus the tensile strength of the epidermis. Stretching to rupture the leaf samples of wild-type Arabidopsis or any1 mutant with reduced cell waviness did not show any cell detachment upon failure. However, I hypothesized the undulating cell borders could enhance the resistance of the epidermis against the propagation of damage. I observed a considerable anisotropy in the tear behavior of onion epidermis parallel and perpendicular to the cells’ main axis. Tears along the cell lines propagated without much resistance resulting in brittle failure of the tissue. This was observed to originate from tears propagating by cell detachment. Perpendicular to the cells’ main axis, tears had considerable difficulty in propagating. Fracturing the leaf samples with wavy epidermal cells, I noticed the cracks propagated in both the cell borders and the cell wall intermittently. I hypothesized that this pattern of fracture in the epidermis with wavy cells indicates an increase in the fracture toughness. To untangle the influence of material anisotropy from the cell geometry on fracture toughness, I designed macroscopic physical models of the epidermis by laser engraving the cell patterns on polymethylmethacrylate. This way, the isotropic material would allow studying only the effect of cell geometry. While fracturing the control specimens with no engraving and the specimens with longitudinally placed cells demonstrated a brittle fracture, fractures transverse to cell lines in the onion cell patterns or across the Arabidopsis cotyledon wavy cell pattern showed an increased fracture toughness. I suggest the wavy shape of pavement cells in the epidermis results from the alternate placement of stiffer regions in the cell wall, a process that can initiate from a stochastic stress anisotropy due to buckling. Further, these shapes increase the fracture toughness of the plant epidermis protecting it against the spread of damage; an ingenious defense mechanism at the most exposed surfaces.
52

Propulsion biomimétique de structures élastiques

Ramananarivo, Sophie 10 January 2014 (has links) (PDF)
Les oiseaux et poissons se déplacent dans leur environnement fluide en interagissant avec l'air/eau qui les entoure. Pour des régimes inertiels, les mécanismes de propulsion se basent sur un transfert de quantité de mouvement au fluide; les battements d'ailes ou de nageoires générant un jet dans le sillage de l'animal qui le propulse vers l'avant. Pour les oiseaux comme pour les poissons, les structures utilisées possèdent une certaine flexibilité, et sont donc susceptibles de plier de façon importante. La littérature montre que ces déformations passives peuvent améliorer les performances de propulsion lorsqu'elles sont exploitées de façon constructive. Le détail des mécanismes en jeu reste cependant mal compris. L'objectif de cette thèse est d'étudier, à travers deux modèles biomimétiques, la façon dont une structure battante déformable génère des forces de propulsion. Le premier modèle est une version mécanique simplifiée d'insecte dotée d'ailes flexibles, tandis que le deuxième est un nageur dont le corps élastique reproduit le mouvement d'ondulation d'une anguille. Nous montrons que la façon dont ces systèmes se déforment passivement est déterminante pour leurs performances, et que leur réponse élastique peut être décrite par des modèles théoriques simplifiés d'oscillateurs forcés. Ces modélisations mettent par ailleurs en avant le rôle crucial joué par le frottement fluide quadratique qui s'oppose aux mouvements de battements de la structure. Ce résultat introduit l'idée, un peu contre-intuitive, qu'il peut s'avérer avantageux de dissiper une part de son énergie dans le fluide pour améliorer ses performances.
53

Inverse optimal control for redundant systems of biological motion / Contrôle optimal inverse de systèmes de mouvements biologiques redondants

Panchea, Adina 10 December 2015 (has links)
Cette thèse aborde les problèmes inverses de contrôle optimal (IOCP) pour trouver les fonctions de coûts pour lesquelles les mouvements humains sont optimaux. En supposant que les observations de mouvements humains sont parfaites, alors que le processus de commande du moteur humain est imparfait, nous proposons un algorithme de commande approximative optimale. En appliquant notre algorithme pour les observations de mouvement humaines collectées: mouvement du bras humain au cours d'une tâche de vissage industrielle, une tâche de suivi visuel d’une cible et une tâche d'initialisation de la marche, nous avons effectué une analyse en boucle ouverte. Pour les trois cas, notre algorithme a trouvé les fonctions de coût qui correspondent mieux ces données, tout en satisfaisant approximativement les Karush-Kuhn-Tucker (KKT) conditions d'optimalité. Notre algorithme offre un beau temps de calcul pour tous les cas, fournir une opportunité pour son utilisation dans les applications en ligne. Pour la tâche de suivi visuel d’une cible, nous avons étudié une modélisation en boucle fermée avec deux boucles de rétroaction PD. Avec des données artificielles, nous avons obtenu des résultats cohérents en termes de tendances des gains et les critères trouvent par notre algorithme pour la tâche de suivi visuel d’une cible. Dans la seconde partie de notre travail, nous avons proposé une nouvelle approche pour résoudre l’IOCP, dans un cadre d'erreur bornée. Dans cette approche, nous supposons que le processus de contrôle moteur humain est parfait tandis que les observations ont des erreurs et des incertitudes d'agir sur eux, étant imparfaite. Les erreurs sont délimitées avec des limites connues, sinon inconnu. Notre approche trouve l'ensemble convexe de de fonction de coût réalisables avec la certitude qu'il comprend la vraie solution. Nous numériquement garanties en utilisant des outils d'analyse d'intervalle. / This thesis addresses inverse optimal control problems (IOCP) to find the cost functions for which the human motions are optimal. Assuming that the human motion observations are perfect, while the human motor control process is imperfect, we propose an approximately optimal control algorithm. By applying our algorithm to the human motion observations collected for: the human arm trajectories during an industrial screwing task, a postural coordination in a visual tracking task and a walking gait initialization task, we performed an open loop analysis. For the three cases, our algorithm returned the cost functions which better fit these data, while approximately satisfying the Karush-Kuhn-Tucker (KKT) optimality conditions. Our algorithm offers a nice computational time for all cases, providing an opportunity for its use in online applications. For the visual tracking task, we investigated a closed loop modeling with two PD feedback loops. With artificial data, we obtained consistent results in terms of feedback gains’ trends and criteria exhibited by our algorithm for the visual tracking task. In the second part of our work, we proposed a new approach to solving the IOCP, in a bounded error framework. In this approach, we assume that the human motor control process is perfect while the observations have errors and uncertainties acting on them, being imperfect. The errors are bounded with known bounds, otherwise unknown. Our approach finds the convex hull of the set of feasible cost function with a certainty that it includes the true solution. We numerically guaranteed this using interval analysis tools.
54

Experimental removal of subsurface oil droplets

Serrano Ramos, Paloma Arena 03 1900 (has links)
Background: Addressing oil spills is crucial to protect the marine environment (Etkin, 2021). While physical and mechanical recovery methods have proven effective in controlling surface oil slicks (Doshi, 2018), subsurface challenges remain unaddressed. There is a need for low-cost, effective, and environmentally friendly solutions for subsurface oil removal. Bioinspired designs, based on nature’s evolutionary optimization, could offer promising solutions to oil spills. Objectives: The primary objective was to explore innovative and bioinspired approaches for effectively capturing and eliminating oil droplets from subsurface environments. The study aims to pioneer breakthroughs in biomimetic technologies for subsurface oil recovery. The objectives include developing a system inspired by humpback whales using bubbles, creating a fiber-based system inspired by copepods, and exploring sound as a separation technique for emulsions. Additionally, to decode the fluid mechanics within each capture system, unraveling the optimal processes responsible for successful oil droplet capture and separation in the emulsion simulation. And finally to assess system performance and potential for real-world scaling beyond the lab setting. Methods: A controlled environment simulating post-spill scenarios was established using different types of oil (crude oil, canola oil, fish oil). The emulsions were then exposed to three technology systems: micro-bubble redirection system, brush capture system, and sound wave modulations. The efficiency of oil removal and capture from the subsurface was measured using absorbent weight for the micro-bubble systems and lipid extraction for capture brush efficiency. High-speed camera images were taken to track oil droplet redirection in a flow tank, and ImageJ software to analyze droplet characteristics for effective control. Results: The analysis demonstrated that the Micro-Bubble air flotation method emerges as a highly efficient solution for post-spill oil recovery, consistently demonstrating exceptional performance. Cylinder-Ring Bubble Air Flotation method achieves a remarkable 72.4% recovery rate for canola oil, while fish oil exhibits a 14.0% recovery rate after 3 hours, highlighting the influence of oil viscosity. Be- 4 yond mere buoyancy, air bubbles showcase versatility, redirecting and containing oil droplets. The Micro-Bubble Redirection System, quantitatively assessed in a controlled environment, proves to be a significant breakthrough in controlling oil dispersion in aquatic settings. The biomimetic brush exhibited substantial oil capture capability. The fiber capture system at 360 RPM for 1-minute cycles, repeated 50 times, achieved over 46% oil removal. The modified brush at the same speed and duration captured over 19% of total oil. Post-treatment, the average size of oil droplets increased from 4.5 m to 5.5 m, showcasing changes in droplet size distribution with the fiber capture system. The sonic treatment effectively separated the majority of oil from water, revealing small oil droplets (x = 0.026 mm) in the central emulsion. This phenomenon warrants further investigation as a potential alternative to chemical surfactants. Conclusion: The development of biomimetic tools for oil spill clean-up represents a significant advancement in environmental protection. By addressing subsurface oil droplets, these methods contribute to safeguarding marine food webs from oil contamination. This study underscores the importance of innovative, natureinspired solutions in tackling complex environmental challenges. / Contexte : La lutte contre les déversements de pétrole est cruciale pour atténuer leur impact sur l’environnement marin (Etkin, 2021). Alors que les méthodes de récupération physique et m´ecanique se sont révélées efficaces pour contrôler les nappes de pétrole en surface (Doshi, 2018), les d´efis liés aux couches sous-marines restent non résolus. Il existe un besoin de solutions économiques, efficaces et respectueuses de l’environnement pour l’élimination du pétrole en sous-surface. Les conceptions bioinspirées, basées sur l’optimisation évolutive de la nature, pourraient offrir des solutions prometteuses aux déversements de pétrole. Objectifs : L’objectif principal était d’explorer des approches innovantes et bioinspirées pour capturer et éliminer efficacement les gouttelettes de pétrole des environnements sousmarins. L’étude vise à initier des percées dans les technologies biomimétiques pour la récupération du pétrole en sous-surface. Les objectifs incluent le développement d’un système inspiré des baleines à bosse utilisant des bulles, la création d’un système basé sur les fibres inspiré des copépodes, et l’exploration du son comme technique de séparation des émulsions. De plus, décoder la mécanique des fluides dans chaque système de capture, en démêlant les processus optimaux responsables de la capture et de la séparation réussies des gouttelettes de pétrole dans la simulation d’émulsion. Enfin, évaluer les performances du système et son potentiel de mise à l’échelle dans le monde réel au-delà du cadre du laboratoire. Méthodes : Un environnement contrôlé simulant des scénarios post-déversement a été établi en utilisant différents types de pétrole (pétrole brut, huile de colza, huile de poisson). Les émulsions ont ensuite été exposées à trois systèmes technologiques : système de redirection à micro-bulles, système de capture par brosse, et modulations des ondes sonores. L’efficacité de l’élimination et de la capture du pétrole en sous-surface a été mesurée en utilisant le poids absorbant pour les systèmes à micro-bulles et l’extraction des lipides pour l’efficacité de la brosse de capture. Des images de caméra haute vitesse ont été prises pour suivre la redirection des gouttelettes de pétrole dans 1 un réservoir à écoulement, et le logiciel ImageJ pour analyser les caractéristiques des gouttelettes pour un contrôle efficace. Résultats : L’analyse a démontré que la méthode de flottation d’air à microbulles émerge comme une solution très efficace pour la récupération d’huile après une fuite, montrant de manière cohérente des performances exceptionnelles. La méthode de flottation d’air à cylindre-anneau atteint un remarquable taux de récupération de 72,4% pour l’huile de canola, tandis que l’huile de poisson présente un taux de récupération de 14,0 % après 3 heures, mettant en évidence l’influence de la viscosité de l’huile. Au-delà de la simple flottabilité, les bulles d’air montrent leur polyvalence en redirigeant et en contenant les gouttelettes d’huile. Le système de redirection à microbulles, évalué de manière quantitative dans un environnement contôlé, s’avère être une avancée significative dans le contrôle de la dispersion de l’huile dans les milieux aquatiques. La brosse biomimétique a montré une capacité de capture substantielle de l’huile. Le système de capture de fibres à 360 tours par minute pendant des cycles d’1 minute, répété 50 fois, a atteint plus de 46% d’élimination de l’huile. La brosse modifiée à la même vitesse et durée a capturé plus de 19 % de l’huile totale. Après traitement, la taille moyenne des gouttelettes d’huile est passée de 4,5 m à 5,5 m, mettant en évidence des changements dans la distribution de la taille des gouttelettes avec le système de capture de fibres. Le traitement sonique a séparé efficacement la majorité de l’huile de l’eau, révélant de petites gouttelettes d’huile (x = 0,026 mm) dans l’émulsion centrale. Ce phénomène mérite une investigation plus approfondie en tant qu’alternative potentielle aux agents tensioactifs chimiques. Conclusion : Le développement d’outils biomimétiques pour le nettoyage des déversements de pétrole représente une avancée significative dans la protection de l’environnement. En s’attaquant aux gouttelettes de pétrole en sous-surface, ces méthodes contribuent à protéger les réseaux alimentaires marins de la contamination par le pétrole. Cette étude souligne l’importance de solutions innovantes et inspirées par la nature pour relever les défis environnementaux complexes.

Page generated in 0.0584 seconds