Spelling suggestions: "subject:"refinery,""
91 |
Desenvolvimento de compósitos de engenharia baseados em polipropileno reforçado com lignina / Development of lignin-based polypropylene compositesDias, Otávio Augusto Titton [UNESP] 12 December 2016 (has links)
Submitted by OTAVIO AUGUSTO TITTON DIAS (otaviotd@gmail.com) on 2017-02-07T12:19:37Z
No. of bitstreams: 1
Otávio [rev. 06.02.17] - arquivamento.pdf: 3569255 bytes, checksum: d063af8c0f50bdd6bd8ea5a53186f094 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-13T15:49:14Z (GMT) No. of bitstreams: 1
dias_oat_me_bot.pdf: 3569255 bytes, checksum: d063af8c0f50bdd6bd8ea5a53186f094 (MD5) / Made available in DSpace on 2017-02-13T15:49:14Z (GMT). No. of bitstreams: 1
dias_oat_me_bot.pdf: 3569255 bytes, checksum: d063af8c0f50bdd6bd8ea5a53186f094 (MD5)
Previous issue date: 2016-12-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / As preocupações ambientais e o esgotamento dos combustíveis fósseis resultaram em um interesse crescente em materiais ambientalmente amigáveis, à base de polímeros naturais. Esforços estão sendo feitos para introduzir a lignina em compostos plásticos, tais como polipropileno, com o objetivo de produzir materiais com boas características mecânicas e, ao mesmo tempo, ambientalmente amigáveis. A lignina é uma matéria-prima amplamente disponível na natureza, que contém alta densidade de compostos aromáticos, os quais são atualmente, em sua maioria, derivados do petróleo. No entanto, grande parte da lignina é utilizada para geração de energia e pode ser um potencial agente poluidor se não destinada de forma adequada. Desse modo, é importante encontrar uma maneira econômica de converter esse polímero natural em materiais de alto valor agregado, como compósitos com alto desempenho mecânico e térmico. Neste estudo, compósitos de polipropileno e de lignina kraft de pinus (LKI) e de bagaço de cana (LBC) foram submetidos à extrusão, e os corpos de prova foram produzidos pelo processo de injeção. Os materiais produzidos foram analisados quanto às propriedades mecânicas, térmicas (TGA, DSC, HDT), química (FTIR), reológica (índice de fluidez) e morfológica (MEV). Os objetivos desta pesquisa foram desenvolver novos compósitos de polipropileno contendo lignina e proporcionar propriedades mecânicas comparáveis aos polipropilenos comerciais, além de obter compósito com alto grau de afinidade entre a lignina e o polipropileno. Os resultados mostraram que a incorporação de lignina na matriz de polipropileno originou, de maneira geral, compósitos com propriedades adequadas para vários segmentos industriais, especialmente aqueles em que características mecânicas e térmicas são cruciais, tais como a substituição de plásticos de engenharia e polipropileno com cargas minerais. / Environmental concerns and the depletion of fossil fuels resulted in a growing interest in environmentally friendly materials based on natural polymers. Efforts are being made to introduce the lignin in plastic composites such as polypropylene, in order to produce materials with good mechanical characteristics and at the same time environmentally friendly. Lignin is a biopolymer widely available which contains high density of aromatic compounds. Nowadays, the aromatic compounds are almost exclusively derived from petroleum. However, the lignin is used mainly to generate energy and can be a pollution potential if not properly treated. Lignin, however, can improve the performance of composites. Moreover, it is important to find an economical way to convert lignin into high value-added materials. In this study, blends of polypropylene, pine kraft lignin (LKI) and sugar cane bagasse lignin (LBC) were subjected to extrusion and the specimens were produced by injection process. The materials produced were analyzed for their mechanical, thermal (TGA, DSC, HDT), chemical (FTIR), rheological (melt flow index) and morphological (SEM) properties. The objective of this research was to develop new lignin-based polypropylene composite with mechanical properties comparable to commercial polypropylene. The results showed that the incorporation of lignin in polypropylene matrix resulted in composites, in general, with properties suitable for various industrial segments, especially those in which mechanical and thermal properties are crucial, such as the replacement of engineering plastics and polypropylene mineral filled.
|
92 |
Empresas que aprendem e inovam: estudo de caso da valoração de resíduo agroindustrial proveniente da soja na Coplacana com foco em frações proteicas por meio de método analítico verde / Companies that learn and innovate: a case study of the evaluation of agroindustrial residue from soybean in Coplacana focusing on protein fractions by means of a green analytical methodRossi, Renata Cristina 17 June 2019 (has links)
A presente pesquisa objetivou o desenvolvimento de um estudo de caso voltado à valoração de resíduo agroindustrial de soja gerado na Coplacana (Unidade de Grãos, Piracicaba, SP, Brasil), com o intuito de se determinar o potencial deste material como um recurso com vistas às frações proteicas através de método analítico verde. O Brasil é um dos principais países produtores de alimentos, contudo, ainda enfrenta a realidade do desperdício em todas as etapas desta cadeia produtiva. A geração de resíduos está associada ao desperdício no uso de insumos, às perdas entre a produção e o consumo, e aos materiais gerados ao longo da cadeia agroindustrial. Para que as indústrias consigam alcançar seu desempenho ambiental, também estarem de acordo com as exigências legais e mercadológicas é preciso gerenciamento dos resíduos sólidos gerados na cadeia produtiva associada a novos modelos de gestão empresarial. Neste sentido, o reaproveitamento de resíduos agroindustriais no país apresenta-se como uma porta de entrada para novos modelos de negócios, e tem demandado uma reconfiguração de todos os processos, produtos e serviços verdes e sustentáveis para além dos muros de uma empresa, rumo à bioeconomia circular. Procedeu-se o desenvolvimento da pesquisa através da revisão de literatura pertinente, apresentação geral da empresa, entrevista junto aos gestores, estudo de caso e apresentação dos resultados. No que tange ao levantamento da quantidade de material residual da cadeia de soja gerado na Coplacana, concluiu-se com base nos resultados encontrados que, um novo modelo de negócios (lançamento do Food Tech Hub) e métodos (com base na tecnologia de micro-ondas para digestão, extração e transformação de resíduos agroindustriais em escalas de laboratório e industriais) se colocam como uma alternativa viável, robusta e aderente aos novos pressupostos da empresa. / The present research aimed at the development of a case study focused on the evaluation of soybean agro-industrial residue generated at Coplacana (Grain Unit, Piracicaba, SP, Brazil), whose main objective was to determine the potential of this material as a resource with views to the protein fractions by green analytical method. Brazil is one of the main food producing countries, however, it still faces the reality of waste in all stages of this production chain. The generation of waste is associated with the waste in the use of inputs, the losses between production and consumption, and the materials generated along the agro-industrial chain. In order for industries to achieve their environmental performance, they are also in accordance with legal and marketing requirements. It is necessary to manage solid waste generated in the production chain associated with new business models. In this sense, the reuse of agro-industrial waste in the country presents itself as a gateway to new market models, and has demanded a reconfiguration of all green and sustainable processes, products and services beyond the walls of a company, towards the circular bio-economy. The research was developed through a review of relevant literature, general presentation of the company, interview with managers, case study and presentation of results. Regarding the survey of the amount of residual material from the soybean chain generated at Coplacana, it was concluded based on the results found that a new business model (Food Tech Hub launch) and methods (based on micro- waves for digestion, extraction and transformation of agroindustrial waste in laboratory and industrial scales) are considered as a viable alternative, robust and adherent to the new assumptions of the company.
|
93 |
Design and Analysis of Flexible Biodiesel Processes with Multiple FeedstocksPokoo-Aikins, Grace Amarachukwu 2010 August 1900 (has links)
With the growing interest in converting a wide variety of biomass-based
feedstocks to biofuels, there is a need to develop effective procedures for the design and
optimization of multi-feedstock biorefineries. The unifying goal of this work is the
development of systematic methodologies and procedures for designing flexible multifeedstock
biorefineries. This work addresses four problems that constitute building
blocks towards achieving the unifying goal of the dissertation.
The first problem addresses the design and techno-economic analysis of an
integrated system for the production of biodiesel from algal oil. With the sequestration
of carbon dioxide from power plant flue gases, algae growth and processing has the
potential to reduce greenhouse gas emissions. Algae are a non-food oil feedstock source
and various pathways and technologies for obtaining algal oil were investigated.
Detailed economic and sensitivity analysis reveal specific scenarios that lead to
profitability of algal oil as an alternative feedstock. In the second problem, a new safety metric is introduced and utilized in process
design and selection. A case study was solved to assess the potential of producing
biodiesel from sewage sludge. The entire process was evaluated based on multiple
criteria including cost, technology and safety.
The third problem is concerned with incorporating flexibility in the design phase
of the development of multi-feedstock biofuel production processes. A mathematical
formulation is developed for determining the optimal flexible design for a biorefinery
that is to accommodate the use of multiple feedstocks. Various objective functions may
be utilized for the flexible plant depending on the purpose of the flexibility analysis and
a case study is presented to demonstrate one such objective function.
Finally, the development of a systematic procedure for incorporating flexibility
and heat integration in the design phase of a flexible feedstock production process is
introduced for the fourth problem. A mathematical formulation is developed for use in
determining the heat exchange network design. By incorporating the feedstock scenarios
under investigation, a mixed integer linear program is generated and a flexible heat
exchange network scheme can be developed. The solution provides for a network that
can accommodate the heating and cooling demands of the various scenarios while
meeting minimum utility targets.
|
94 |
CHARACTERIZATION AND PROCESSING OF LIGNOCELLULOSIC BIOMASS IN IONIC LIQUIDSFitzPatrick, Michael 26 May 2011 (has links)
In the last decade there has been increasing research interest in the value of bio-sourced materials from lignocellulosic biomass. The dissolution of cellulose by ionic liquids (ILs) has led to investigations including the dissolution of cellulose, lignin, and complete biomass samples and the in situ processing of cellulose. Rapid quantitative measurement of cellulose dissolution in ILs is difficult. In this work, Fourier transform infrared spectroscopy (FTIR) spectra of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) were subjected to partial least squares (PLS) regression to model dissolved cellulose content. PLS regression was used due to the ease in developing predictive models with this technique in addition to linear regression being ineffectual for modeling when applied to potentially thousands of variables. Applying a normalization data treatment, before regression, generated a model that estimated cellulose content within 0.533 wt%. The methods described provided the basis for a rapid methodology to determine dissolved cellulose content.
Development of rapid and facile screening techniques to determine the effectiveness of various ILs as solvents for cellulose or lignin will aid in the development of lignocellulosic based bioproducts. In this work, optical microscopy with and without the use of cross-polarized lenses, was used to monitor cellulose and lignin dissolution in two imidazolium-based and two phosphonium-based ILs as well as n,n-dimethylacetamide/lithium chloride (DMAc/LiCl), demonstrating that this technique could be applied more broadly than solely for ILs. The described optical microscopy methodology was more rapid and sensitive than more traditional techniques, such as visual inspection.
The viscosity of [emim][OAc] (162 cP) is 100 times that of water at 20°C and could inhibit its use as a solvent for cellulose. There is a need for simple, low-cost and environmentally benign methods to reduce the viscosity of ILs to aid in cellulose dissolution. In this work, 4 wt% cellulose dissolved in [emim][OAc] was subjected to 50 psi CO2 and 20 psi N2, as a control environment, at both 50°C and 75°C. After 24 hours a nearly 2-fold increase in dissolved cellulose over the N2 control was demonstrated through the application of a 50 psi CO2 environment for cellulose dissolution in [emim][OAc] at 50°C. / Thesis (Master, Chemical Engineering) -- Queen's University, 2011-05-25 22:58:17.744
|
95 |
Pretreatment and Enzymatic Treatment of Spruce : A functional designed wood components separation for a future biorefineryWang, Yan January 2014 (has links)
The three main components of wood, namely, cellulose, hemicellulose, and lignin, can be used in various areas. However, since lignin covalently crosslinks with wood polysaccharides creating networks that is an obstacle for extraction, direct extraction of different wood components in high yield is not an easy matter. One potential approach to overcome such obstacles is to treat the wood with specific enzymes that degrade the networks by specific catalysis. However, the structure of wood is so compact that the penetration of the wood fibers by large enzyme molecules is hindered. Thus, the pretreatment of wood prior to the application of enzymes is necessary, for “opening” the structure. One pretreatment method that was performed in this thesis is based on kraft pulping, which is a well-established and industrialized technique. For untreated wood, the wood fibers cannot be attacked by the enzymes. A relatively mild pretreatment was sufficient for wood polysaccharides hydrolyzed by a culture filtrate. A methanol-alkali mixture extraction was subsequently applied to the samples that were pretreated with two types of hemicellulases, Gamanase and Pulpzyme HC, respectively. The extraction yield increased after enzymatic treatment, and the polymers that were extracted from monocomponent enzyme-treated wood had a higher degree of polymerization. Experiments with in vitro prepared lignin polysaccharide networks suggested that the increased extraction was due to the enzymatic untying. However, the relatively large loss of hemicellulose, particularly including (galacto)glucomannan (GGM), represents a problem with this technique. To improve the carbohydrate yield, sodium borohydride (NaBH4), polysulfide and anthraquinone were used, which increased the yields from 76.6% to 89.6%, 81.3% and 80.0%, respectively, after extended impregnation (EI). The additives also increased the extraction yield from approximately 9 to 12% w/w wood. Gamanase treatment prior to the extraction increased the extraction yield to 14% w/w wood. Sodium dithionite (Na2S2O4) is an alternative reducing agent for the preservation of hemicelluloses because it is less expensive than metal hydrides and only contains sodium and sulfur, which will not introduce new elements to the recovery system. Moreover, Na2S2O4has the potential to be generated from black liquor. Na2S2O4 has some preservation effect on hemicelluloses, and the presence of Na2S2O4 also contributed to delignification. The extraction yield increased to approximately 15% w/w wood. Furthermore, Na2S2O4 has been applied in the kraft pulping process of spruce. The yield and viscosity increased, while the Klason lignin content and kappa number decreased, which represents a beneficial characteristic for kraft pulp. The brightness and tensile strength of the resulting sheets also improved. However, the direct addition of Na2S2O4 to white liquor led to greater reject content. This problem was solved by pre-impregnation with Na2S2O4 and/or mild steam explosion (STEX) prior to the kraft pulping process. Following Na2S2O4 pre-impregnation and mild STEX, the obtained kraft pulp had substantially better properties compared with the properties exhibited after direct addition of Na2S2O4 to the white liquor. The wood structure opening efficiency of mild STEX alone was also tested. The accessibility of the wood structure to enzymes was obtained even at very modest STEX conditions, according to a reducing sugar analysis, and was not observed in untreated wood chips, which were used as a reference. The mechanical effect of STEX appears to be of great importance at lower temperatures, and both chemical and mechanical effects occur at higher STEX temperatures. / <p>QC 20140903</p>
|
96 |
Cellulose-fiber-based thermal insulation materials with fungal resistance, improved water resistance and reaction-to-fire propertiesZheng, Chao January 2017 (has links)
Thermal insulation materials made from natural fibrous materials, such as cellulose fibers, have advantages over others from a sustainability point of view. However, cellulosic materials are generally prone to mold and absorb moisture, and these have negative effects on the insulation properties, the durability of insulation materials, and interior air quality. In this thesis, cellulose-fiber-based insulation foams were prepared from bleached chemithermomechanical softwood pulp, and these foams showed promising thermal insulation properties and fungal resistance. Hydrophobic extractives were isolated from birch (Betula verrucosa) outer bark and used to improve the water resistance of the foams, which were impregnated in solutions of extractives and then dried. The modified foams showed greater water resistance, and the modification had no negative effects on the thermal insulation, fungal resistance, and compressive strength of the foams. Another potential problem with low density cellulosic thermal insulation materials is their poor reaction-to-fire properties. Cellulose-fiber-based insulation foams were prepared from formulations containing bleached chemithermomechanical softwood pulp and commercial fire retardants to improve the reaction of the foams to fire. Single-flame source test results showed that the foams containing 20% expandable graphite (20% EG) or 25% synergetic (25% SY) fire retardant had significantly improved reaction-to-fire properties and passed class E, which reflected that they can resist a small flame attack without substantial flame spreading for a short period according to EN 13501-1. Compared with the reference without any fire retardant, the peak heat release rate (Peak-HRR) of the 20% EG and 25% SY decreased by 62% and 39% respectively when the samples were subjected to a radiance heat flow of 25 kW m-2 in a Cone Calorimeter. The thesis demonstrates that it is possible to produce cellulose-fiber-based insulation materials with improved properties in terms of fungal, improved water resistance and reaction-to-fire properties. / <p>QC 20170428</p> / Energy-efficient cellulosic insulation products/panels for green building solutions
|
97 |
Contribution à l’étude des complexes lignine-hydrates de carbone (LCC) dans le bois : étude de l’impact des différentes étapes d’un procédé de bioraffinerie sans soufre sur les LCC / Contribution to the study of lignin-carbohydrate complexes (LCCs) in wood : study of the impact of the different steps of a sulfur-free biorefinery process on these LCCsMonot, Claire 18 December 2015 (has links)
La valorisation de la biomasse lignocellulosique est aujourd’hui un enjeu majeur du fait de la réduction des ressources fossiles. Séparer chaque constituant pour les valoriser de la meilleure façon possible est l’objectif des bioraffineries papetières. L’effluent papetier, la liqueur noire, est actuellement brûlé pour produire de l’énergie, mais sa gazéification permettrait d’augmenter ces rendements énergétiques. Mais pour cela une cuisson sans soufre du bois est nécessaire, le soufre inhibant la gazéification.Cette étude a donc porté en premier lieu sur la faisabilité d’un fractionnement sans soufre du bois, plus ardu qu’un procédé kraft traditionnel contenant du soufre. Le travail a été effectué sur les bois résineux, ceux-ci étant plus difficiles à délignifier que les bois feuillus. Une étape d’autohydrolyse du bois, préalable au fractionnement à la soude, a été effectuée afin d’extraire les hémicelluloses pour une valorisation ultérieure. Les travaux ont montré que ce prétraitement permettait de délignifier le bois plus facilement et ainsi d’envisager un fractionnement sans soufre. La cellulose obtenue par ce procédé présente une pureté et un degré de polymérisation suffisants pour envisager son utilisation pour de la viscose ou pour des applications chimiques.La lignine ne présentant pas de différences structurelles majeures entre du bois préhydrolysé ou non, les complexes entre la lignine et les hydrates de carbone (LCC) ont été analysés. Il a été montré que la préhydrolyse modifie significativement la quantité et la composition de ces complexes, permettant d’expliquer par là les résultats obtenus. / The valorization of lignocellulosic biomass is nowadays a major issue due to the reduction of fossil resources. Separating each component to valorize them the best way as possible is the goal of the pulp and paper biorefineries. The effluent of the mill, called the black liquor, is currently burnt to produce energy, but gasification would increase the energy efficiency. For this, a sulfur-free cooking of wood is necessary, as sulfur inhibits gasification.Therefore this study first focused on the feasibility of cooking without sulfur, which is more difficult than a conventional kraft cooking containing sulfur. The work was done on softwood which is more difficult to delignify than hardwood. The wood was first pretreated with an autohydrolysis to remove hemicelluloses for further valorization.The results were conclusive for the production of cellulose pulp for chemical applications. To explain the differences obtained, structural differences of wood components were looked for. Lignin did not show major differences whether the wood was prehydrolyzed or not, whereas the complexes between lignin and carbohydrates (LCCs) showed significant differences, which would explain the results obtained.
|
98 |
Etude de l'impact de l'extraction des hémicelluloses du bois sur les procédés d'obtention de cellulose et d'éthanol dans le cadre d'une bioraffinerie lignocellulosique / Study of the impact of hemicellulose extraction from wood on cellulose fibres and ethanol production as part of a lignocellulosic biorefineryBoiron, Lucie 07 September 2012 (has links)
Le renouveau des biocarburants pourrait être aussi celui de l’industrie chimique de la pâte àpapier, en diversifiant l’éventail des produits fabriqués à partir de bois. Cette étude porte surl’intégration d’une extraction des hémicelluloses du bois au procédé Kraft dans le cadre d’une coproductionde fibres cellulosiques et de bioéthanol.Le travail expérimental de cette étude balaie l’ensemble du procédé depuis l’extraction de plus dela moitié des hémicelluloses de bois de résineux, par autohydrolyse ou par hydrolyse à l’acidedilué, jusqu’à la production de fibres cellulosiques blanchies et d’éthanol obtenu par la fermentationdes hydrolysats.Les pâtes de bois préhydrolysé se sont distinguées par de très bonnes aptitudes à ladélignification lors de la cuisson Kraft et lors du blanchiment à l’oxygène. Une analyse desconstituants des pâtes de bois préhydrolysé a permis de comprendre pourquoi la préhydrolyseconduit à une diminution du rendement de cuisson (perte de lignine et de la totalité deshémicelluloses dont les xylanes). L’analyse des lignines de pâtes écrues de bois préhydrolysé apermis d’émettre une hypothèse quant à l’excellente aptitude de ces pâtes à la délignification lorsdu blanchiment à l’oxygène.En définitive, l’intégration d’une extraction des hémicelluloses à une usine Kraft telle qu’elle estproposée par cette étude permet d’obtenir à partir de 100 kg de bois de résineux, 27 à 36kilogrammes de fibres cellulosiques blanchies et jusqu’à 6 litres de bioéthanol. Ces fibrescellulosiques blanchies présentent des caractéristiques attrayantes pour la production de cellulose àusage chimique ou de nanocristaux de cellulose. / Biofuel revival could be a great opportunity for the chemical pulp industry to widen the range ofits products made from wood. This thesis deals with the integration of a softwood hemicelluloseextraction step prior to the Kraft pulping process in order to produce both cellulose fibres andbioethanol.In this study the experimental work covers the entirety of the process: from the extraction ofmore than half of the hemicelluloses from wood either by autohydrolysis or dilute acid hydrolysis tothe production of bleached cellulosic fibres as well as ethanol from fermentated wood hydrolyzates.Prehydrolyzed wood and their subsequent pulps stood out by their excellent delignification abilityduring Kraft cooking and oxygen bleaching. Quantitative analysis of the main constituants of thepulps showed why prehydrolysis leads to decreased Kraft pulp yields (extra lignin loss andhemicelluloses loss including xylans). A range of hypotheses to explain the good delignificationability of prehydrolyzed wood Kraft pulps during oxygen bleaching was narrowed to one by Kraftlignin analysis.The overall results of the hemicellulose extraction prior to Kraft pulping as it has been defined inthis study showed that from 100 kg of softwood, 27 to 36 kg of bleached cellulosic fibres and 6litres of ethanol could be produced. The bleached cellulosic fibres are of great interest for dissolvingpulp or cellulose nanocrystals production.
|
99 |
Conditions hydrodynamiques et organisation structurale dans le dépôt formé lors de l'ultrafiltration tangentielle : application à la bioraffinerie / Hydrodynamic conditions and structural organization in the deposit during cross flow ultrafiltration : application to biorefineryRey, Candice 19 December 2017 (has links)
Les procédés de séparation membranaire, utilisés couramment dans de nombreux domaines industriels, comme l’agro-alimentaire, le traitement des eaux ou les biotechnologies, sont de plus en plus mis en œuvre dans le domaine des bioraffineries. L’ultrafiltration tangentielle, par exemple, montre un fort potentiel dans l’étape de séparation des matières premières comme les nanocristaux de cellulose pour les transformer en biomasse. Cependant, l’augmentation de la concentration en particules à la surface de la membrane limite ce procédé, entrainant la formation des phénomènes de polarisation de concentration et de colmatage, réduisant les performances de filtration. Ces travaux de thèse ont pour objectif d’améliorer la compréhension des mécanismes de formation de ces phénomènes. Deux méthodes de caractérisation couvrant les échelles nanométriques à micrométiques ont été mises au point, grâce au développement de cellules de filtration couplant l’ultrafiltration à la diffusion de rayons X aux petits angles d’une part, et à la micro vélocimétrie par images de particules d’autre part. Ces mesures effectuées in-situ lors de la filtration tangentielle de suspensions de nanocristaux de cellulose et d’argile de Laponite, ont permis de caractériser l’organisation structurale et le champ hydrodynamique au sein des couches de polarisation. La corrélation de ces résultats avec les lois de comportement rhéologique des suspensions ont permis d’accéder pour la première fois aux champs de contraintes dans les couches de polarisation de concentration et de colmatage lors du procédé. / Membrane separation processes commonly used in several industrial applications, like bio and agro industries, waste water and clean water treatments, are more and more exploited in biorefinery. As an example, cross-flow ultrafiltration process shows a high potential in separation protocol of raw feed components like cellulose nanocrystals to produce biomass. This process is limited by the increase of particles concentration at the membrane surface, which conducts to phenomena named concentration polarization and fouling, which decrease the filtration performance. The PhD work objective is to bring a better understanding of the mechanisms involved in the formation of these phenomena. Two characterization methods covering length scales from nanometer to micrometer have been developed thanks to new designed tangential ultrafiltration cells allowing to link the ultrafiltration process to small angle X rays scattering and to micro particle image velocimetry. These measurement performed in-situ during ultrafiltration of nanocrystal celluloses and Laponite clay suspensions have allowed characterizing the structural organization and the velocity field within the concentration polarization layers. The correlation of these results with the rheological behavior properties of the suspensions, have permitted to access for the first time to the stress field within the concentration polarization and fouling layer during the tangential ultrafiltration process.
|
100 |
Obtenção de inoculante e de coquetel enzimático lignocelulolítico a partir de comunidades microbianas termofílicas / Acquisition of an inoculant and a lignocellulolytic enzymatic cocktail from thermophilic microbial communitiesSouza, Robson de Assis 17 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:51:56Z (GMT). No. of bitstreams: 1
texto completo.pdf: 807100 bytes, checksum: 0492f1cb907f9d50a51882efd7f76fcd (MD5)
Previous issue date: 2012-02-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Three thermophilic lignocellulolytic microbial communities were selected by enriched method with continual subcultivation at 55 °C. One community was selected from cow manure compost, another from decaying sugar cane bagasse, and the last one was obtained by mixing aliquots of the culture suspension from the first two. Those communities were able to degrade a cellulosic strip in three cultivation days. Evaluating the maximal day of CMCase and xylanase activity, it was observed that the mixed consortium showed the best results, with CMCase activity of 0.09 U mg-1 at the second day of cultivation, and xylanase activity of 2.86 U mg-1 at the fourth day. These enzymes were partially characterized with relation to temperature and pH of optimal activity. It was observed that CMCase showed the highest activity at 60 °C and pH 5.4, and kept 80% of its activity in a pH range of 4.5-6.5. On the other hand, the best activity for xylanase was verified at 65 °C, and in that same pH range, the enzyme kept 97% of its residual activity. Cell-free extract was concentrated by ultrafiltration. The enzymatic cocktail obtained showed CMCase activity 25-fold higher and xylanase activity 55-fold higher than the crude enzymatic extract. The cocktail was conserved by adding 50% glycerol. After storage for 60 days at 4 °C, xylanase kept 80% of the initial activity and CMCase didn t show loss of activity when kept at 25 °C for the same period. The mixed community cellular mass constitutes an inoculant able to maintain the cellulolytic phenotype after rapid freezing and storage at - 80 °C for 60 days. Fed-batch essay suggested that this community has potential to be manipulated in order to continuously hold the cellulolytic enzymes expression over time. The results evidenced the acquisition of an enzymatic cocktail from an inoculant which cellulolytic activity supported pH changes and optimal activity around 60 °C. / Três comunidades microbianas lignocelulolíticas e termofílicas foram selecionadas por subcultivo em meio de enriquecimento a 55 °C. Uma comunidade foi selecionada a partir de esterco de gado em compostagem, outra de bagaço de cana em decomposição e a terceira foi obtida a partir da mistura de alíquotas do meio de cultivo das duas anteriores. Tais comunidades apresentavam a característica de decompor uma fita de celulose em três dias de cultivo. Ao se avaliar o dia de máxima atividade CMCase e xilanase em cada comunidade, verificou-se que os melhores resultados foram encontrados no consórcio misto, com atividade de 0,09 U mg-1 para CMCase no segundo dia de cultivo e 2,86 U mg-1 para xilanase no quarto dia. Essas enzimas foram parcialmente caracterizadas em relação à temperatura e pH ótimos de atuação. Verificou-se que CMCase apresentou maior atividade a 60 °C e pH 5,4, e manteve 80% de sua atividade numa faixa de pH de 4,5 a 6,5. Já para a xilanase, a temperatura ótima foi de 65 °C e nessa mesma faixa de pH manteve uma atividade residual de 97%. O extrato livre de células foi concentrado por ultrafiltração e obteve-se um coquetel enzimático com atividade de CMCase e xilanase maior que no extrato bruto cerca de 25 e 55 vezes, respectivamente. O coquetel foi conservado pela adição de 50% de glicerol. Após 60 dias de armazenamento a 4 °C, a xilanase manteve 80% de sua atividade inicial e a CMCase não apresentou perda de atividade quando mantida a 25 °C pelo mesmo período. A massa celular da comunidade mista constitui um inoculante capaz de manter o fenótipo celulolítico após congelamento rápido e armazenamento a - 80 °C por 60 dias. Ensaio em batelada alimentada mostrou que essa comunidade apresenta potencial para ser manipulada a fim de se manter continuamente a expressão de enzimas celulolíticas ao longo do tempo. Os resultados mostraram que foi possível obter um coquetel de enzimas a partir do inoculante, cuja atividade celulolítica tolerou variações de pH e temperatura ótima em torno de 60 °C.
|
Page generated in 0.0472 seconds